Because of concerns about incineration, the Department of Defense plans to use alternative means to destroy the chemical agent stockpiles at the Pueblo and Blue Grass facilities. The DOD contracted with Bechtel Parsons to design and operate pilot plants for this purpose. As part of the NRC efforts to assist the DOD with its chemical demilitarization efforts, the Department requested a review and assessment of the Bechtel designs for both plants. An earlier report presented an assessment of the Pueblo design. This report provides a review of the Blue Grass Chemical Agent Destruction Pilot Plant based on review of data and information about the initial design and some intermediate design data. Among other topics, the report presents technical risk assessment issues, an analysis of delivery and disassembly operations and of agent destruction core processes, and an examination of waste treatment.
The United States is in the process of destroying its chemical weapons stockpile. In 1996, Congress mandated that DOD demonstrate and select alternative methods to incineration at the Blue Grass and Pueblo sites. The Assembled Chemical Weapons Alternatives (ACWA) program was setup to oversee the development of these methods, and pilot plants were established at both sites. One of the new technologies being developed at the Blue Grass pilot plant are metal parts treaters (MPTs) to be used for the empty metal munitions cases. During recent testing, some issues arose with the MPTs that caused the ACWA to request a review by the NRC to investigate and determine their causes. This book presents a discussion of the MPT system; an assessment of the MPT testing activities; an analysis of thermal testing, modeling, and predicted throughput of the MPT; and an examination of the applicability of munitions treatment units under development at Pueblo for the Blue Grass pilot plant.
This volume considers engineering risk analysis applications to the field of building safety. Building codes and design criteria used by architects and engineersâ€"standards of good practice defined by industry consensusâ€"have made great strides in bringing the dangers of facilities under control, but the range of hazards (e.g., fire, indoor air pollutants, electrical malfunctions) is broad. Risk analysis offers improved overall safety of new and existing facilities without imposing unacceptable costs. Broad application of risk analysis will help facility professionals, policymakers, and facility users and owners to understand the risks, to determine what levels of risk are socially and economically tolerable, and to manage risk more effectively.
In November 1999, GSA and the U.S. Department of State convened a symposium to discuss the apparently conflicting objectives of security from terrorist attack and the design of public buildings in an open society. The symposium sponsors rejected the notion of rigid, prescriptive design approaches. The symposium concluded with a challenge to the design and security professions to craft aesthetically appealing architectural solutions that achieve balanced, performance-based approaches to both openness and security. In response to a request from the Office of the Chief Architect of the Public Buildings Service, the National Research Council (NRC) assembled a panel of independent experts, the Committee to Review the Security Design Criteria of the Interagency Security Committee. This committee was tasked to evaluate the ISC Security Design Criteria to determine whether particular provisions might be too prescriptive to allow a design professional "reasonable flexibility" in achieving desired security and physical protection objectives.
NASA maintains a planetary protection policy to avoid the forward biological contamination of other worlds by terrestrial organisms, and back biological contamination of Earth from the return of extraterrestrial materials by spaceflight missions. Forward-contamination issues related to Mars missions were addressed in a 2006 National Research Council (NRC) book, Preventing the Forward Contamination of Mars. However, it has been more than 10 years since back-contamination issues were last examined. Driven by a renewed interest in Mars sample return missions, this book reviews, updates, and replaces the planetary protection conclusions and recommendations contained in the NRC's 1997 report Mars Sample Return: Issues and Recommendations. The specific issues addressed in this book include the following: The potential for living entities to be included in samples returned from Mars; Scientific investigations that should be conducted to reduce uncertainty in the above assessment; The potential for large-scale effects on Earth's environment by any returned entity released to the environment; Criteria for intentional sample release, taking note of current and anticipated regulatory frameworks; and The status of technological measures that could be taken on a mission to prevent the inadvertent release of a returned sample into Earth's biosphere.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.