Under the direction of the U.S. Army's Chemical Materials Agency (CMA) and mandated by Congress, the nation is destroying its chemical weapons stockpile. Large quantities of secondary waste are being generated in the process, and managing these wastes safely and effectively is a critical part of CMA's weapons disposal program. To assist, the CMA asked the NRC to examine the environmental and regulatory requirements that secondary waste treatment is subject to, and to assess best practices by industry in meeting such requirements for similar facilities. This book presents an overview of secondary wastes from chemical agent disposal facilities (CDF), a comparison of CDF and industry experience, site-specific analysis of major secondary waste issues, an examination of closure wastes, and findings and recommendations.
The U.S. Army Program Manager for Assembled Chemical Weapons Alternatives (PMACWA) is charged with disposing of chemical weapons as stored at two sites: Pueblo, Colorado, and Blue Grass, Kentucky. In accordance with congressional mandates, technologies other than incineration are to be used if they are as safe and as cost effective. The weapons are to be disposed of in compliance with the Chemical Weapons Convention. Although an element of the U.S. Army, the PMACWA is responsible to the Assistant Secretary of Defense for Acquisitions, Technology, and Logistics for completing this mission. This book deals with the expected significant quantities of secondary wastes that will be generated during operations of the facilities and their closure. While there are only estimates for the waste quantities that will be generated, they provide a good basis for planning and developing alternatives for waste disposal while the plants are still in the design phase. Establishing efficient disposal options for the secondary wastes can enable more timely and cost-effective operation and closure of the facilities.
Under the direction of the U.S. Army's Chemical Materials Agency (CMA) and mandated by Congress, the nation is destroying its chemical weapons stockpile. Large quantities of secondary waste are being generated in the process, and managing these wastes safely and effectively is a critical part of CMA's weapons disposal program. To assist, the CMA asked the NRC to examine the environmental and regulatory requirements that secondary waste treatment is subject to, and to assess best practices by industry in meeting such requirements for similar facilities. This book presents an overview of secondary wastes from chemical agent disposal facilities (CDF), a comparison of CDF and industry experience, site-specific analysis of major secondary waste issues, an examination of closure wastes, and findings and recommendations.
This book responds to a request by the director of the U.S. Army Chemical Materials Agency (CMA) for the National Research Council to examine and evaluate the ongoing planning for closure of the four currently operational baseline incineration chemical agent disposal facilities and the closure of a related testing facility. The book evaluates the closure planning process as well as some aspects of closure operations that are taking place while the facilities are still disposing of agent. These facilities are located in Anniston, Alabama; Pine Bluff, Arkansas; Tooele, Utah; and Umatilla, Oregon. They are designated by the acronyms ANCDF, PBCDF, TOCDF, and UMCDF, respectively. Although the facilities all use the same technology and are in many ways identical, each has a particular set of challenges.
For the last two decades, the United States has been destroying its entire stockpile of chemical agents. At the facilities where these agents are being destroyed, effluent gas streams pass through large activated carbon filters before venting to ensure that any residual trace vapors of chemical agents and other pollutants do not escape into the atmosphere in exceedance of regulatory limits. All the carbon will have to be disposed of for final closure of these facilities to take place. In March 2008, the Chemical Materials Agency asked the National Research Council to study, evaluate, and recommend the best methods for proper and safe disposal of the used carbon from the operational disposal facilities. This volume examines various approaches to handling carbon waste streams from the four operating chemical agent disposal facilities. The approaches that will be used at each facility will ultimately be chosen bearing in mind local regulatory practices, facility design and operations, and the characteristics of agent inventories, along with other factors such as public involvement regarding facility operations.
The U.S. Army Program Manager for Assembled Chemical Weapons Alternatives (PMACWA) is charged with disposing of chemical weapons as stored at two sites: Pueblo, Colorado, and Blue Grass, Kentucky. In accordance with congressional mandates, technologies other than incineration are to be used if they are as safe and as cost effective. The weapons are to be disposed of in compliance with the Chemical Weapons Convention. Although an element of the U.S. Army, the PMACWA is responsible to the Assistant Secretary of Defense for Acquisitions, Technology, and Logistics for completing this mission. This book deals with the expected significant quantities of secondary wastes that will be generated during operations of the facilities and their closure. While there are only estimates for the waste quantities that will be generated, they provide a good basis for planning and developing alternatives for waste disposal while the plants are still in the design phase. Establishing efficient disposal options for the secondary wastes can enable more timely and cost-effective operation and closure of the facilities.
As the result of disposal practices from the early to mid-twentieth century, approximately 250 sites in 40 states, the District of Columbia, and 3 territories are known or suspected to have buried chemical warfare materiel (CWM). Much of this CWM is likely to occur in the form of small finds that necessitate the continuation of the Army's capability to transport treatment systems to disposal locations for destruction. Of greatest concern for the future are sites in residential areas and large sites on legacy military installations. The Army mission regarding the remediation of recovered chemical warfare materiel (RCWM) is turning into a program much larger than the existing munition and hazardous substance cleanup programs. The Army asked the Nation Research Council (NRC) to examine this evolving mission in part because this change is significant and becoming even more prominent as the stockpile destruction is nearing completion. One focus in this report is the current and future status of the Non-Stockpile Chemical Material Project (NSCMP), which now plays a central role in the remediation of recovered chemical warfare materiel and which reports to the Chemical Materials Agency. Remediation of Buried Chemical Warfare Materiel also reviews current supporting technologies for cleanup of CWM sites and surveys organizations involved with remediation of suspected CWM disposal sites to determine current practices and coordination. In this report, potential deficiencies in operational areas based on the review of current supporting technologies for cleanup of CWM sites and develop options for targeted research and development efforts to mitigate potential problem areas are identified.
January 2012 saw the completion of the U.S. Army's Chemical Materials Agency's (CMA's) task to destroy 90 percent of the nation's stockpile of chemical weapons. CMA completed destruction of the chemical agents and associated weapons deployed overseas, which were transported to Johnston Atoll, southwest of Hawaii, and demilitarized there. The remaining 10 percent of the nation's chemical weapons stockpile is stored at two continental U.S. depots, in Lexington, Kentucky, and Pueblo, Colorado. Their destruction has been assigned to a separate U.S. Army organization, the Assembled Chemical Weapons Alternatives (ACWA) Element. ACWA is currently constructing the last two chemical weapons disposal facilities, the Pueblo and Blue Grass Chemical Agent Destruction Pilot Plants (denoted PCAPP and BGCAPP), with weapons destruction activities scheduled to start in 2015 and 2020, respectively. ACWA is charged with destroying the mustard agent stockpile at Pueblo and the nerve and mustard agent stockpile at Blue Grass without using the multiple incinerators and furnaces used at the five CMA demilitarization plants that dealt with assembled chemical weapons - munitions containing both chemical agents and explosive/propulsive components. The two ACWA demilitarization facilities are congressionally mandated to employ noncombustion-based chemical neutralization processes to destroy chemical agents. In order to safely operate its disposal plants, CMA developed methods and procedures to monitor chemical agent contamination of both secondary waste materials and plant structural components. ACWA currently plans to adopt these methods and procedures for use at these facilities. The Assessment of Agent Monitoring Strategies for the Blue Grass and Pueblo Chemical Agent Destruction Pilot Plants report also develops and describes a half-dozen scenarios involving prospective ACWA secondary waste characterization, process equipment maintenance and changeover activities, and closure agent decontamination challenges, where direct, real-time agent contamination measurements on surfaces or in porous bulk materials might allow more efficient and possibly safer operations if suitable analytical technology is available and affordable.
The United States is in the process of destroying its chemical weapons stockpile. In 1996, Congress mandated that DOD demonstrate and select alternative methods to incineration at the Blue Grass and Pueblo sites. The Assembled Chemical Weapons Alternatives (ACWA) program was setup to oversee the development of these methods, and pilot plants were established at both sites. One of the new technologies being developed at the Blue Grass pilot plant are metal parts treaters (MPTs) to be used for the empty metal munitions cases. During recent testing, some issues arose with the MPTs that caused the ACWA to request a review by the NRC to investigate and determine their causes. This book presents a discussion of the MPT system; an assessment of the MPT testing activities; an analysis of thermal testing, modeling, and predicted throughput of the MPT; and an examination of the applicability of munitions treatment units under development at Pueblo for the Blue Grass pilot plant.
The Chemical Weapons Convention requires, among other things, that the signatories to the conventionâ€"which includes the United Statesâ€"destroy by April 29, 2007, or as soon possible thereafter, any chemical warfare materiel that has been recovered from sites where it has been buried once discovered. For several years the United States and several other countries have been developing and using technologies to dispose of this non-stockpile materiel. To determine whether international efforts have resulted in technologies that would benefit the U.S. program, the U.S. Army asked the NRC to evaluate and compare such technologies to those now used by the United States. This book presents a discussion of factors used in the evaluations, summaries of evaluations of several promising international technologies for processing munitions and for agent-only processing, and summaries of other technologies that are less likely to be of benefit to the U.S. program at this time.
The main approach adopted by the U.S. Army for destruction of all declared chemical weapon materiel (CWM) is incineration. There has been considerable public opposition to this approach, however, and the Army is developing a mix of fixed site and mobile treatment technologies to dispose of non-stockpile CWM. To assist in this effort, the Army requested NRC to review and evaluate these technologies, and to assess its plans for obtaining regulatory approval for and to involve the public in decisions about the application of those technologies. This book presents an assessment of non-stockpile treatment options and the application of these systems to the non-stockpile inventory, of regulatory and permitting issues, and of the role of the public.
The Army's ability to meet public and congressional demands to destroy expeditiously all of the U.S. declared chemical weapons would be enhanced by the selection and acquisition of appropriate explosive destruction technologies (EDTs) to augment the main technologies to be used to destroy the chemical weapons currently at the Blue Grass Army Depot (BGAD) in Kentucky and the Pueblo Chemical Depot (PCD) in Colorado. The Army is considering four EDTs for the destruction of chemical weapons: three from private sector vendors, and a fourth, Army-developed explosive destruction system (EDS). This book updates earlier evaluations of these technologies, as well as any other viable detonation technologies, based on several considerations including process maturity, process efficacy, process throughput, process safety, public and regulatory acceptability, and secondary waste issues, among others. It also provides detailed information on each of the requirements at BGAD and PCD and rates each of the existing suitable EDTs plus the Army's EDS with respect to how well it satisfies these requirements.
The Department of Defense, through the Assembled Chemical Weapons Alternatives program, is currently in the process of constructing two full-scale pilot plants at the Pueblo Chemical Depot in Colorado and the Blue Grass Army Depot in Kentucky to destroy the last two remaining inventories of chemical weapons in the U.S. stockpile. These two storage sites together account for about 10 percent of the original U.S. chemical agent stockpile that is in the process of being destroyed in accordance with the international Chemical Weapons Convention treaty. Unlike their predecessors, these facilities will use neutralization technologies to destroy agents contained within rockets, projectiles, and mortar rounds, requiring the use of specially designed equipment. As part of its focus on safe operation of the planned facilities, the Program Manager for Assembled Chemical Weapons Alternatives asked the National Research Council (NRC) to conduct a study to offer guidance on the application of process safety metrics at the Pueblo Chemical Depot and Blue Grass Army Depot. Process safety is a disciplined framework for managing the integrity of operating systems, processes and personnel handling hazardous substances, and operations by applying good design principles, engineering, and operating practices. Process Safety Metrics at the Blue Grass and Pueblo Chemical Agent Destruction Pilot Plants discusses the use of leading and lagging process safety metrics that could provide feedback on the effectiveness of controls to mitigate risks and minimize consequences of potential incidents. The book makes several recommendations that will facilitate the development and application of process safety metrics at both sites.
In 1993, the United States signed the Chemical Weapons Convention (CWC), an international treaty outlawing the production, stockpiling, and use of chemical weapons. The chemical weapons stockpiles at five of the U.S. chemical weapons storage sites have now been destroyed. At those sites, the munitions were robotically opened and the chemical agent was removed, collected, and incinerated. One of the remaining sites with chemical weapons stockpiles is the Blue Grass Army Depot near Richmond, Kentucky. In this case, caustic hydrolysis will be used to destroy the agents and energetics, resulting in a secondary waste stream known as hydrolysate. Review Criteria for Successful Treatment of Hydrolysate at the Blue Grass Chemical Agent Destruction Pilot Plant develops criteria for successfully treating the hydrolysate, identifies systemization data that should factor into the criteria/decision process, suggests potential modifications to suggested treatment that would allow continued onsite processing, and assesses waste disposal procedures. This study further examines the possibility of delay or failure of the existing technology and examines possible alternatives to onsite treatment.
Johnston Atoll Chemical Agent Disposal System (JACADS), the first fully integrated chemical agent disposal facility, is located on Johnston Island some 800 miles southwest of Hawaii. JACADS completed ten years of operations in November 2000, which resulted in the disposal of more than 2000 tons of nerve and mustard agents. In 1998, the Army began planning for closure and dismantling of the facility. In 1999, the NRC was asked to review the Army's planning. This book presents an assessment of planned and ongoing closure activities on Johnston Island in some detail. It also provides an analysis of the likely implications for closure of disposal facilities at eight continental U.S. storage sites.
The U.S. Army is in the process of destroying its chemical weapons stockpile and related, non-stockpile chemical materiel. At the request of the Army, the National Research Council (NRC) has published a number of studies over the last 16 years providing scientific and technical advice on that disposal effort. For this study, the NRC was asked to assess the design of the facility at the Pine Bluff (Arkansas) Arsenal intended to dispose of a large amount of non-stockpile materiel, including 1250 recovered old chemical weapons. This is the first of a series of studies directed at reviewing and assessing the Product Manager for Non-Stockpile Chemical Materiel initiatives for destruction of this materiel. The report provides the results of the Pine Bluff assessment. It includes a description of the Pine Bluff facility; a discussion of worker and public safety; management issues; regulatory, permitting, and public involvement; and the role of alternative destruction technologies currently residing at the facility.
Chemical warfare materiel (CWM) is a collection of diverse items that were used during 60 years of efforts by the United States to develop a capability for conducting chemical warfare. Nonstockpile CWM, which is not included in the current U.S. inventory of chemical munitions, includes buried materiel, recovered materiel, binary chemical weapons, former production facilities, and miscellaneous materiel. CWM that was buried in pits on former military sites is now being dug up as the land is being developed for other purposes. Other CWM is on or near the surface at former test and firing ranges. According to the Chemical Weapons Convention (CWC), which was ratified by the United States in April 1997, nonstockpile CWM items in storage at the time of ratification must be destroyed by 2007. The U.S. Army is the designated executive agent for destroying CWM. Nonstockpile CWM is being handled by the Non-Stockpile Chemical Materiel Program (NSCMP); stockpile CWM is the responsibility of the Chemical Stockpile Disposal Program. Because nonstockpile CWM is stored or buried in many locations, the Army is developing transportable disposal systems that can be moved from site to site as needed. The Army has plans to test prototypes of three transportable systems-the rapid response system (RRS), the munitions management device (MMD), and the explosive destruction system (EDS)-for accessing and destroying a range of nonstockpile chemical agents and militarized industrial chemicals. The RRS is designed to treat recovered chemical agent identification sets (CAIS), which contain small amounts of chemical agents and a variety of highly toxic industrial chemicals. The MMD is designed to treat nonexplosively configured chemical munitions. The EDS is designed to treat munitions containing chemical agents with energetics equivalent to three pounds of TNT or less. These munitions are considered too unstable to be transported or stored. A prototype EDS system has recently been tested in England by non-stockpile program personnel. Although originally proposed for evaluation in this report, no test data were available to the committee on the composition of wastes from the EDS. Therefore, alternative technologies for the destruction of EDS wastes will be discussed in a supplemental report in fall 2001. Treatment of solid wastes, such as metal munition bodies, packing materials, and carbon air filters, were excluded from this report. Review and Evaluation of the Army Non-Stockpile Chemical Materiel Disposal Program: Disposal of Neutralent Wastes evaluates the near-term (1999-2005) application of advanced (nonincineration) technologies, such as from the Army's Assembled Chemical Weapons Assessment Program and the Alternative Technologies and Approaches Project, in a semi-fixed, skid-mounted mode to process Rapid Response System, Munitions Management Device, and Explosive Destruction System liquid neutralization wastes.
In 1993, the United States signed the Chemical Weapons Convention (CWC), an international treaty outlawing the production, stockpiling, and use of chemical weapons. The chemical weapons stockpiles at five of the U.S. chemical weapons storage sites have now been destroyed. At those sites, the munitions were robotically opened and the chemical agent was removed, collected, and incinerated. One of the remaining sites with chemical weapons stockpiles is the Blue Grass Army Depot near Richmond, Kentucky. In this case, caustic hydrolysis will be used to destroy the agents and energetics, resulting in a secondary waste stream known as hydrolysate. Review Criteria for Successful Treatment of Hydrolysate at the Blue Grass Chemical Agent Destruction Pilot Plant develops criteria for successfully treating the hydrolysate, identifies systemization data that should factor into the criteria/decision process, suggests potential modifications to suggested treatment that would allow continued onsite processing, and assesses waste disposal procedures. This study further examines the possibility of delay or failure of the existing technology and examines possible alternatives to onsite treatment.
By the end of 2009, more than 60 percent of the global chemical weapons stockpile declared by signatories to the Chemical Weapons Convention will have been destroyed, and of the 184 signatories, only three countries will possess chemical weapons-the United States, Russia, and Libya. In the United States, destruction of the chemical weapons stockpile began in 1990, when Congress mandated that the Army and its contractors destroy the stockpile while ensuring maximum safety for workers, the public, and the environment. The destruction program has proceeded without serious exposure of any worker or member of the public to chemical agents, and risk to the public from a storage incident involving the aging stockpile has been reduced by more than 90 percent from what it was at the time destruction began on Johnston Island and in the continental United States. At this time, safety at chemical agent disposal facilities is far better than the national average for all industries. Even so, the Army and its contractors are desirous of further improvement. To this end, the Chemical Materials Agency (CMA) asked the NRC to assist by reviewing CMA's existing safety and environmental metrics and making recommendations on which additional metrics might be developed to further improve its safety and environmental programs.
In 1993, at Tooele Army Depot, Utah, the Army completed construction of the Tooele Chemical Agent Disposal Facility (TOCDF), the first complete facility for destruction of lethal unitary chemical agents and munitions to be built in the continental United States. The TOCDF will employ the Army's baseline incineration system to destroy the depot's increment of the nation's aging unitary chemical stockpile. This book assesses Army changes and improvements to the TOCDF in response to recommendations contained in earlier reports of the committee. It assesses aspects of the facility's readiness for safe agent handling and destruction operations, its agent monitoring system, and its site specific risk assessment.
One of the last two sites with chemical munitions and chemical materiel is the Pueblo Chemical Depot in Pueblo, Colorado. The stockpile at this location consists of about 800,000 projectiles and mortars, all of which are filled with the chemical agent mustard. Under the direction of the Assembled Chemical Weapons Alternative Program (ACWA), the Army has constructed the Pueblo Chemical Agent Destruction Pilot Plant (PCAPP) to destroy these munitions. The primary technology to be used to destroy the mustard agent at PCAPP is hydrolysis, resulting in a secondary waste stream referred to as hydrolysate. PCAPP features a process that will be used to treat the hydrolysate and the thiodiglycol - a breakdown product of mustard - contained within. The process is a biotreatment technology that uses what are known as immobilized cell bioreactors. After biodegradation, the effluent flows to a brine reduction system, producing a solidified filter cake that is intended to be sent offsite to a permitted hazardous waste disposal facility. Water recovered from the brine reduction system is intended to be recycled back through the plant, thereby reducing the amount of water that is withdrawn from groundwater. Although biotreatment of toxic chemicals, brine reduction, and water recovery are established technologies, never before have these technologies been combined to treat mustard hydrolysate. At the request of the U.S. Army, Review Criteria for Successful Treatment of Hydrolysate at the Pueblo Chemical Agent Destruction Pilot Plant reviews the criteria for successfully treating the hydrolysate. This report provides information on the composition of the hydrolysate and describes the PCAPP processes for treating it; discusses stakeholder concerns; reviews regulatory considerations at the federal, state, and local levels; discusses Department of Transportation regulations and identifies risks associated with the offsite shipment of hydrolysate; establishes criteria for successfully treating the hydrolysate and identifies systemization data that should factor into the criteria and decision process for offsite transport and disposal of the hydrolysate; and discusses failure risks and contingency options as well as the downstream impacts of a decision to ship hydrolysate offsite.
The U.S. Army's chemical stockpile is aging and gradually deteriorating. Its elimination has public, political, and environmental ramifications. The U.S. Department of Defense has designated the Department of the Army as the executive agent responsible for the safe, timely, and effective elimination of the chemical stockpile. This book provides recommendations on the direction the Army should take in pursuing and completing its Chemical Stockpile Disposal Program.
This study is a review and evaluation of the U.S. Army's Report to Congress on Alternative Approaches for the Treatment and Disposal of Chemical Agent Identification Sets (CAIS). CAIS are test kits that were used to train soldiers from 1928 to 1969 in defensive responses to a chemical attack. They contain samples of chemicals that had been or might have been used by opponents as chemical warfare agents. The Army's baseline approach for treating and disposing of CAIS has been to develop a mobile treatment system, called the Rapid Response System (RRS), which can be carried by several large over-the-road trailers.
Johnston Atoll Chemical Agent Disposal System (JACADS), the first fully integrated chemical agent disposal facility, is located on Johnston Island some 800 miles southwest of Hawaii. JACADS completed ten years of operations in November 2000, which resulted in the disposal of more than 2000 tons of nerve and mustard agents. In 1998, the Army began planning for closure and dismantling of the facility. In 1999, the NRC was asked to review the Army's planning. This book presents an assessment of planned and ongoing closure activities on Johnston Island in some detail. It also provides an analysis of the likely implications for closure of disposal facilities at eight continental U.S. storage sites.
Chemical warfare materiel (CWM) is a collection of diverse items that were used during 60 years of efforts by the United States to develop a capability for conducting chemical warfare. Nonstockpile CWM, which is not included in the current U.S. inventory of chemical munitions, includes buried materiel, recovered materiel, binary chemical weapons, former production facilities, and miscellaneous materiel. CWM that was buried in pits on former military sites is now being dug up as the land is being developed for other purposes. Other CWM is on or near the surface at former test and firing ranges. According to the Chemical Weapons Convention (CWC), which was ratified by the United States in April 1997, nonstockpile CWM items in storage at the time of ratification must be destroyed by 2007. The U.S. Army is the designated executive agent for destroying CWM. Nonstockpile CWM is being handled by the Non-Stockpile Chemical Materiel Program (NSCMP); stockpile CWM is the responsibility of the Chemical Stockpile Disposal Program. Because nonstockpile CWM is stored or buried in many locations, the Army is developing transportable disposal systems that can be moved from site to site as needed. The Army has plans to test prototypes of three transportable systems-the rapid response system (RRS), the munitions management device (MMD), and the explosive destruction system (EDS)-for accessing and destroying a range of nonstockpile chemical agents and militarized industrial chemicals. The RRS is designed to treat recovered chemical agent identification sets (CAIS), which contain small amounts of chemical agents and a variety of highly toxic industrial chemicals. The MMD is designed to treat nonexplosively configured chemical munitions. The EDS is designed to treat munitions containing chemical agents with energetics equivalent to three pounds of TNT or less. These munitions are considered too unstable to be transported or stored. A prototype EDS system has recently been tested in England by non-stockpile program personnel. Although originally proposed for evaluation in this report, no test data were available to the committee on the composition of wastes from the EDS. Therefore, alternative technologies for the destruction of EDS wastes will be discussed in a supplemental report in fall 2001. Treatment of solid wastes, such as metal munition bodies, packing materials, and carbon air filters, were excluded from this report. Review and Evaluation of the Army Non-Stockpile Chemical Materiel Disposal Program: Disposal of Neutralent Wastes evaluates the near-term (1999-2005) application of advanced (nonincineration) technologies, such as from the Army's Assembled Chemical Weapons Assessment Program and the Alternative Technologies and Approaches Project, in a semi-fixed, skid-mounted mode to process Rapid Response System, Munitions Management Device, and Explosive Destruction System liquid neutralization wastes.
One of the last two sites with chemical munitions and chemical materiel is the Pueblo Chemical Depot in Pueblo, Colorado. The stockpile at this location consists of about 800,000 projectiles and mortars, all of which are filled with the chemical agent mustard. Under the direction of the Assembled Chemical Weapons Alternative Program (ACWA), the Army has constructed the Pueblo Chemical Agent Destruction Pilot Plant (PCAPP) to destroy these munitions. The primary technology to be used to destroy the mustard agent at PCAPP is hydrolysis, resulting in a secondary waste stream referred to as hydrolysate. PCAPP features a process that will be used to treat the hydrolysate and the thiodiglycol - a breakdown product of mustard - contained within. The process is a biotreatment technology that uses what are known as immobilized cell bioreactors. After biodegradation, the effluent flows to a brine reduction system, producing a solidified filter cake that is intended to be sent offsite to a permitted hazardous waste disposal facility. Water recovered from the brine reduction system is intended to be recycled back through the plant, thereby reducing the amount of water that is withdrawn from groundwater. Although biotreatment of toxic chemicals, brine reduction, and water recovery are established technologies, never before have these technologies been combined to treat mustard hydrolysate. At the request of the U.S. Army, Review Criteria for Successful Treatment of Hydrolysate at the Pueblo Chemical Agent Destruction Pilot Plant reviews the criteria for successfully treating the hydrolysate. This report provides information on the composition of the hydrolysate and describes the PCAPP processes for treating it; discusses stakeholder concerns; reviews regulatory considerations at the federal, state, and local levels; discusses Department of Transportation regulations and identifies risks associated with the offsite shipment of hydrolysate; establishes criteria for successfully treating the hydrolysate and identifies systemization data that should factor into the criteria and decision process for offsite transport and disposal of the hydrolysate; and discusses failure risks and contingency options as well as the downstream impacts of a decision to ship hydrolysate offsite."--Publisher's description.
This report reviews the status of the U.S. Army Chemical Stockpile Disposal Program (CSDP) operations at Tooele, Utah, with respect to previous recommendations and observations made by the National Research Council (NRC) Committee on Review and Evaluation of the Army Chemical Stockpile Disposal Program (Stockpile Committee). The committee recognizes actions that have satisfied recommendations, identifies recommendations that require further action, and provides additional recommendations for improving the overall CSDP performance at the Tooele Chemical Agent Disposal Facility (TOCDF), Tooele, Utah, and other sites.
The Chemical Weapons Convention requires, among other things, that the signatories to the conventionâ€"which includes the United Statesâ€"destroy by April 29, 2007, or as soon possible thereafter, any chemical warfare materiel that has been recovered from sites where it has been buried once discovered. For several years the United States and several other countries have been developing and using technologies to dispose of this non-stockpile materiel. To determine whether international efforts have resulted in technologies that would benefit the U.S. program, the U.S. Army asked the NRC to evaluate and compare such technologies to those now used by the United States. This book presents a discussion of factors used in the evaluations, summaries of evaluations of several promising international technologies for processing munitions and for agent-only processing, and summaries of other technologies that are less likely to be of benefit to the U.S. program at this time.
Chemical warfare materiel (CWM) encompasses diverse items that were used during 60 years of efforts by the United States to develop a capability for conducting chemical warfare. Non-Stockpile CWM (NSCWM) is materiel not included in the current U.S. inventory of chemical munitions and includes buried materiel, recovered materiel, components of binary chemical weapons, former production facilities, and miscellaneous materiel. Because NSCWM is stored or buried at many locations, the Army is developing transportable treatment systems that can be moved from site to site as needed. Originally, the Army planned to develop three transportable treatment systems for nonstockpile chemical materiel: the rapid response system (RRS), the munitions management device (MMD), and the explosive destruction system (EDS). This report supplements an earlier report that evaluated eight alternative technologies for destruction of the liquid waste streams from two of the U.S. Army's transportable treatment systems for nonstockpile chemical materiel: the RRS and the MMD. This report evaluates the same technologies for the destruction of liquid waste streams produced by the EDS and discusses the regulatory approval issues and obstacles for the combined use of the EDS and the alternative technologies that treat the EDS secondary waste streams. Although it focuses on the destruction of EDS neutralent, it also takes into consideration the ability of posttreatment technologies to process the more dilute water rinses that are used in the EDS following treatment with a reagent.
In keeping with a congressional mandate (Public Law 104-484) and the Chemical Weapons Convention, the United States is currently destroying its chemical weapons stockpile. The Army must ensure that the chemical demilitarization workforce is protected from the risks of exposure to hazardous chemicals during disposal operations and during and after facility closure. Good industrial practices developed in the chemical and nuclear energy industries and other operations that involve the processing of hazardous materials include workplace monitoring of hazardous species and a systematic occupational health program for monitoring workers' activities and health. In this report, the National Research Council Committee on Review and Evaluation of the Army Chemical Stockpile Disposal Program examines the methods and systems used at JACADS and TOCDF, the two operational facilities, to monitor the concentrations of airborne and condensed-phase chemical agents, agent breakdown products, and other substances of concern. The committee also reviews the occupational health programs at these sites, including their industrial hygiene and occupational medicine components. Finally, it evaluates the nature, quality, and utility of records of workplace chemical monitoring and occupational health programs.
The main approach adopted by the U.S. Army for destruction of all declared chemical weapon materiel (CWM) is incineration. There has been considerable public opposition to this approach, however, and the Army is developing a mix of fixed site and mobile treatment technologies to dispose of non-stockpile CWM. To assist in this effort, the Army requested NRC to review and evaluate these technologies, and to assess its plans for obtaining regulatory approval for and to involve the public in decisions about the application of those technologies. This book presents an assessment of non-stockpile treatment options and the application of these systems to the non-stockpile inventory, of regulatory and permitting issues, and of the role of the public.
Under the direction of the U.S. Army's Chemical Materials Agency (CMA) and mandated by Congress, the nation is destroying its chemical weapons stockpile. Over the past several years, the Army has requested several studies from the NRC to assist with the stockpile destruction. This study was requested to advise the CMA about the status of analytical instrumentation technology and systems suitable for monitoring airborne chemical warfare agents at chemical weapons disposal and storage facilities. The report presents an assessment of current monitoring systems used for airborne agent detection at CMA facilities and of the applicability and availability of innovative new technologies. It also provides a review of how new regulatory requirements would affect the CMA's current agent monitoring procedures, and whether new measurement technologies are available and could be effectively incorporated into the CMA's overall chemical agent monitoring strategies.
This book responds to a request by the director of the U.S. Army Chemical Materials Agency (CMA) for the National Research Council to examine and evaluate the ongoing planning for closure of the four currently operational baseline incineration chemical agent disposal facilities and the closure of a related testing facility. The book evaluates the closure planning process as well as some aspects of closure operations that are taking place while the facilities are still disposing of agent. These facilities are located in Anniston, Alabama; Pine Bluff, Arkansas; Tooele, Utah; and Umatilla, Oregon. They are designated by the acronyms ANCDF, PBCDF, TOCDF, and UMCDF, respectively. Although the facilities all use the same technology and are in many ways identical, each has a particular set of challenges.
The United States is in the process of destroying its chemical weapons stockpile. In 1996, Congress mandated that DOD demonstrate and select alternative methods to incineration at the Blue Grass and Pueblo sites. The Assembled Chemical Weapons Alternatives (ACWA) program was setup to oversee the development of these methods, and pilot plants were established at both sites. One of the new technologies being developed at the Blue Grass pilot plant are metal parts treaters (MPTs) to be used for the empty metal munitions cases. During recent testing, some issues arose with the MPTs that caused the ACWA to request a review by the NRC to investigate and determine their causes. This book presents a discussion of the MPT system; an assessment of the MPT testing activities; an analysis of thermal testing, modeling, and predicted throughput of the MPT; and an examination of the applicability of munitions treatment units under development at Pueblo for the Blue Grass pilot plant.
The United States has maintained a stockpile of chemical warfare agents and munitions since World War I. The Army leadership has sought outside, unbiased advice on how best to dispose of the stockpile. In 1987, at the request of the Under Secretary of the Army, the National Research Council (NRC) established the Committee on Review and Evaluation of the Army Chemical Stockpile Disposal Program (Stockpile Committee) to provide scientific and technical advice and counsel on the CSDP. This report is concerned with the technology selection for the Pueblo site, where only munitions containing mustard agent are stored. The report assesses a modified baseline process, a slightly simplified version of the baseline incineration system that was used to dispose of mustard munitions on Johnston Island. A second NRC committee is reviewing two neutralization-based technologies for possible use at Pueblo. The evaluation in this report is intended to assist authorities making the selection. It should also help the public and other non-Army stakeholders understand the modified baseline process and make sound judgments about it.
January 2012 saw the completion of the U.S. Army's Chemical Materials Agency's (CMA's) task to destroy 90 percent of the nation's stockpile of chemical weapons. CMA completed destruction of the chemical agents and associated weapons deployed overseas, which were transported to Johnston Atoll, southwest of Hawaii, and demilitarized there. The remaining 10 percent of the nation's chemical weapons stockpile is stored at two continental U.S. depots, in Lexington, Kentucky, and Pueblo, Colorado. Their destruction has been assigned to a separate U.S. Army organization, the Assembled Chemical Weapons Alternatives (ACWA) Element. ACWA is currently constructing the last two chemical weapons disposal facilities, the Pueblo and Blue Grass Chemical Agent Destruction Pilot Plants (denoted PCAPP and BGCAPP), with weapons destruction activities scheduled to start in 2015 and 2020, respectively. ACWA is charged with destroying the mustard agent stockpile at Pueblo and the nerve and mustard agent stockpile at Blue Grass without using the multiple incinerators and furnaces used at the five CMA demilitarization plants that dealt with assembled chemical weapons - munitions containing both chemical agents and explosive/propulsive components. The two ACWA demilitarization facilities are congressionally mandated to employ noncombustion-based chemical neutralization processes to destroy chemical agents. In order to safely operate its disposal plants, CMA developed methods and procedures to monitor chemical agent contamination of both secondary waste materials and plant structural components. ACWA currently plans to adopt these methods and procedures for use at these facilities. The Assessment of Agent Monitoring Strategies for the Blue Grass and Pueblo Chemical Agent Destruction Pilot Plants report also develops and describes a half-dozen scenarios involving prospective ACWA secondary waste characterization, process equipment maintenance and changeover activities, and closure agent decontamination challenges, where direct, real-time agent contamination measurements on surfaces or in porous bulk materials might allow more efficient and possibly safer operations if suitable analytical technology is available and affordable.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.