In 1996, the U.S. Congress enacted two laws, Public Law 104-201 (authorization legislation) and Public Law 104-208 (appropriation legislation), mandating that the U.S. Department of Defense (DOD) conduct an assessment of alternative technologies to the baseline incineration process for the demilitarization of assembled chemical munitions. The PMACWA had previously requested that the National Research Council (NRC) perform and publish an independent evaluation of the seven technologies packages that had been selected during earlier phases of the Assembled Chemical Weapons Assessment (ACWA) program and deliver a report by September 1, 1999. However, to meet that deadline, the NRC Committee on Review and Evaluation of Alternative Technologies for Demilitarization of Assembled Chemical Weapons (ACW Committee) had to terminate its data-gathering activities on March 15, 1999, prior to the completion of demonstration tests. In September 1999, the PMACWA requested that the ACW Committee examine the reports of the demonstration tests and determine if the results changed the committee's original findings, recommendations, and comments. Evaluation of Demonstration Test Results of Alternative Technologies for Demilitarization of Assembled Chemical Weapons documents the committee's reassessment of the findings and recommendations in the original report, Review and Evaluation of Alternative Technologies for Demilitarization of Assembled Chemical Weapons.
In 1996, the U.S. Congress enacted two laws, Public Law 104-201 (authorization legislation) and Public Law 104-208 (appropriation legislation), mandating that the U.S. Department of Defense (DOD) conduct an assessment of alternative technologies to the baseline incineration process for the demilitarization of assembled chemical munitions. The PMACWA had previously requested that the National Research Council (NRC) perform and publish an independent evaluation of the seven technologies packages that had been selected during earlier phases of the Assembled Chemical Weapons Assessment (ACWA) program and deliver a report by September 1, 1999. However, to meet that deadline, the NRC Committee on Review and Evaluation of Alternative Technologies for Demilitarization of Assembled Chemical Weapons (ACW Committee) had to terminate its data-gathering activities on March 15, 1999, prior to the completion of demonstration tests. In September 1999, the PMACWA requested that the ACW Committee examine the reports of the demonstration tests and determine if the results changed the committee's original findings, recommendations, and comments. Evaluation of Demonstration Test Results of Alternative Technologies for Demilitarization of Assembled Chemical Weapons documents the committee's reassessment of the findings and recommendations in the original report, Review and Evaluation of Alternative Technologies for Demilitarization of Assembled Chemical Weapons.
By direction of Congress, the U.S. Department of Defense's (DoD's) program manager for the Assembled Chemical Weapons Assessment (PMACWA) asked the National Research Council (NRC) Committee on Review and Evaluation of Alternative Technologies for Demilitarization of Assembled Chemical Weapons: Phase II (the ACW II committee) to conduct an independent scientific and technical assessment of three alternative technologies (referred to as Demo II) under consideration for the destruction of assembled chemical weapons at U.S. chemical weapons storage sites. The three technologies are AEA Technologies Corporation's (AEA's) electrochemical oxidation process; the transpiring-wall supercritical water oxidation and gasphase chemical reduction processes of Foster Wheeler/Eco Logic/Kvaerner (FW/EL/K); and Teledyne-Commodore's solvated electron process. Each of these technologies represents an alternative to incineration for the complete destruction of chemical agents and associated energetic materials. The demonstration tests were approved by the PMACWA after an initial assessment of each technology. The results of that initial assessment were reviewed by an earlier NRC committee, the Committee on Review and Evaluation of Alternative Technologies for Demilitarization of Assembled Chemical Weapons (the ACW I committee). For the present review, the committee conducted an indepth examination of each technology provider's data, analyses, and demonstration test results for the critical components tested. This review report supplements the ACW I report and considers the demonstration performance of the Demo II candidate technologies and their readiness for advancement to pilot-scale implementation. Because testing in these areas is ongoing, the committee decided to cut short its fact-finding efforts for input to this report as of March 30, 2001.
This report examines seven disposal technologies being considered by the U.S. government as alternative methods to the process of incineration for destroying mortars, rockets, land mines, and other weapons that contain chemical warfare agents, such as mustard gas. These weapons are considered especially dangerous because they contain both chemical warfare agent and explosive materials in an assembled package that must be disassembled for destruction. The study identifies the strengths and weaknesses and advantages and disadvantages of each technology and assesses their potential for full-scale implementation.
This report examines seven disposal technologies being considered by the U.S. government as alternative methods to the process of incineration for destroying mortars, rockets, land mines, and other weapons that contain chemical warfare agents, such as mustard gas. These weapons are considered especially dangerous because they contain both chemical warfare agent and explosive materials in an assembled package that must be disassembled for destruction. The study identifies the strengths and weaknesses and advantages and disadvantages of each technology and assesses their potential for full-scale implementation.
The U.S. Army is in the process of destroying the nation's stockpile of aging chemical weapons stored at eight locations in the continental United States and on Johnston Atoll in the Pacific. Originally, incineration was chosen for the destruction of these stores, but this method has met with public opposition, and Congress directed the Army to develop alternative technologies for destroying the stockpiles in Pueblo, CO and Richmond, KY. To assist the Army in this process, the NRC was asked to evaluate the engineering design study of the three Blue Grass candidates. This book presents an analysis of various issues pertaining to the proposed engineering design package for the Blue Grass facility.
By direction of Congress, the U.S. Department of Defense's (DoD's) program manager for the Assembled Chemical Weapons Assessment (PMACWA) asked the National Research Council (NRC) Committee on Review and Evaluation of Alternative Technologies for Demilitarization of Assembled Chemical Weapons: Phase II (the ACW II committee) to conduct an independent scientific and technical assessment of three alternative technologies (referred to as Demo II) under consideration for the destruction of assembled chemical weapons at U.S. chemical weapons storage sites. The three technologies are AEA Technologies Corporation's (AEA's) electrochemical oxidation process; the transpiring-wall supercritical water oxidation and gasphase chemical reduction processes of Foster Wheeler/Eco Logic/Kvaerner (FW/EL/K); and Teledyne-Commodore's solvated electron process. Each of these technologies represents an alternative to incineration for the complete destruction of chemical agents and associated energetic materials. The demonstration tests were approved by the PMACWA after an initial assessment of each technology. The results of that initial assessment were reviewed by an earlier NRC committee, the Committee on Review and Evaluation of Alternative Technologies for Demilitarization of Assembled Chemical Weapons (the ACW I committee). For the present review, the committee conducted an indepth examination of each technology provider's data, analyses, and demonstration test results for the critical components tested. This review report supplements the ACW I report and considers the demonstration performance of the Demo II candidate technologies and their readiness for advancement to pilot-scale implementation. Because testing in these areas is ongoing, the committee decided to cut short its fact-finding efforts for input to this report as of March 30, 2001.
The Program Manager for Assembled Chemical Weapons Assessment (PMACWA) of the Department of Defense (DOD) requested the National Research Council (NRC) to assess the engineering design studies (EDSs) developed by Parsons/Honeywell and General Atomics for a chemical demilitarization facility to completely dispose of the assembled chemical weapons at the Pueblo Chemical Depot in Pueblo, Colorado. To accomplish the task, the NRC formed the Committee on Review and Evaluation of Alternative Technologies for Demilitarization of Assembled Chemical Weapons: Phase II (ACW II Committee). This report presents the results of the committee's scientific and technical assessment, which will assist the Office of the Secretary of Defense in selecting the technology package for destroying the chemical munitions at Pueblo. The committee evaluated the engineering design packages proposed by the technology providers and the associated experimental studies that were performed to validate unproven unit operations. A significant part of the testing program involved expanding the technology base for the hydrolysis of energetic materials associated with assembled weapons. This process was a concern expressed by the Committee on Review and Evaluation of Alternative Technologies for Demilitarization of Assembled Chemical Weapons (ACW I Committee) in its original report in 1999 (NRC, 1999). The present study took place as the experimental studies were in progress. In some cases, tests for some of the supporting unit operations were not completed in time for the committee to incorporate results into its evaluation. In those cases, the committee identified and discussed potential problem areas in these operations. Based on its expertise and its aggressive data-gathering activities, the committee was able to conduct a comprehensive review of the test data that had been completed for the overall system design. This report summarizes the study.
The main approach adopted by the U.S. Army for destruction of all declared chemical weapon materiel (CWM) is incineration. There has been considerable public opposition to this approach, however, and the Army is developing a mix of fixed site and mobile treatment technologies to dispose of non-stockpile CWM. To assist in this effort, the Army requested NRC to review and evaluate these technologies, and to assess its plans for obtaining regulatory approval for and to involve the public in decisions about the application of those technologies. This book presents an assessment of non-stockpile treatment options and the application of these systems to the non-stockpile inventory, of regulatory and permitting issues, and of the role of the public.
The Program Manager for Assembled Chemical Weapons Assessment (PMACWA) of the Department of Defense (DOD) requested the National Research Council (NRC) to assess the engineering design studies (EDSs) developed by Parsons/Honeywell and General Atomics for a chemical demilitarization facility to completely dispose of the assembled chemical weapons at the Pueblo Chemical Depot in Pueblo, Colorado. To accomplish the task, the NRC formed the Committee on Review and Evaluation of Alternative Technologies for Demilitarization of Assembled Chemical Weapons: Phase II (ACW II Committee). This report presents the results of the committee's scientific and technical assessment, which will assist the Office of the Secretary of Defense in selecting the technology package for destroying the chemical munitions at Pueblo. The committee evaluated the engineering design packages proposed by the technology providers and the associated experimental studies that were performed to validate unproven unit operations. A significant part of the testing program involved expanding the technology base for the hydrolysis of energetic materials associated with assembled weapons. This process was a concern expressed by the Committee on Review and Evaluation of Alternative Technologies for Demilitarization of Assembled Chemical Weapons (ACW I Committee) in its original report in 1999 (NRC, 1999). The present study took place as the experimental studies were in progress. In some cases, tests for some of the supporting unit operations were not completed in time for the committee to incorporate results into its evaluation. In those cases, the committee identified and discussed potential problem areas in these operations. Based on its expertise and its aggressive data-gathering activities, the committee was able to conduct a comprehensive review of the test data that had been completed for the overall system design. This report summarizes the study.
Chemical warfare materiel (CWM) is a collection of diverse items that were used during 60 years of efforts by the United States to develop a capability for conducting chemical warfare. Nonstockpile CWM, which is not included in the current U.S. inventory of chemical munitions, includes buried materiel, recovered materiel, binary chemical weapons, former production facilities, and miscellaneous materiel. CWM that was buried in pits on former military sites is now being dug up as the land is being developed for other purposes. Other CWM is on or near the surface at former test and firing ranges. According to the Chemical Weapons Convention (CWC), which was ratified by the United States in April 1997, nonstockpile CWM items in storage at the time of ratification must be destroyed by 2007. The U.S. Army is the designated executive agent for destroying CWM. Nonstockpile CWM is being handled by the Non-Stockpile Chemical Materiel Program (NSCMP); stockpile CWM is the responsibility of the Chemical Stockpile Disposal Program. Because nonstockpile CWM is stored or buried in many locations, the Army is developing transportable disposal systems that can be moved from site to site as needed. The Army has plans to test prototypes of three transportable systems-the rapid response system (RRS), the munitions management device (MMD), and the explosive destruction system (EDS)-for accessing and destroying a range of nonstockpile chemical agents and militarized industrial chemicals. The RRS is designed to treat recovered chemical agent identification sets (CAIS), which contain small amounts of chemical agents and a variety of highly toxic industrial chemicals. The MMD is designed to treat nonexplosively configured chemical munitions. The EDS is designed to treat munitions containing chemical agents with energetics equivalent to three pounds of TNT or less. These munitions are considered too unstable to be transported or stored. A prototype EDS system has recently been tested in England by non-stockpile program personnel. Although originally proposed for evaluation in this report, no test data were available to the committee on the composition of wastes from the EDS. Therefore, alternative technologies for the destruction of EDS wastes will be discussed in a supplemental report in fall 2001. Treatment of solid wastes, such as metal munition bodies, packing materials, and carbon air filters, were excluded from this report. Review and Evaluation of the Army Non-Stockpile Chemical Materiel Disposal Program: Disposal of Neutralent Wastes evaluates the near-term (1999-2005) application of advanced (nonincineration) technologies, such as from the Army's Assembled Chemical Weapons Assessment Program and the Alternative Technologies and Approaches Project, in a semi-fixed, skid-mounted mode to process Rapid Response System, Munitions Management Device, and Explosive Destruction System liquid neutralization wastes.
Chemical warfare materiel (CWM) encompasses diverse items that were used during 60 years of efforts by the United States to develop a capability for conducting chemical warfare. Non-Stockpile CWM (NSCWM) is materiel not included in the current U.S. inventory of chemical munitions and includes buried materiel, recovered materiel, components of binary chemical weapons, former production facilities, and miscellaneous materiel. Because NSCWM is stored or buried at many locations, the Army is developing transportable treatment systems that can be moved from site to site as needed. Originally, the Army planned to develop three transportable treatment systems for nonstockpile chemical materiel: the rapid response system (RRS), the munitions management device (MMD), and the explosive destruction system (EDS). This report supplements an earlier report that evaluated eight alternative technologies for destruction of the liquid waste streams from two of the U.S. Army's transportable treatment systems for nonstockpile chemical materiel: the RRS and the MMD. This report evaluates the same technologies for the destruction of liquid waste streams produced by the EDS and discusses the regulatory approval issues and obstacles for the combined use of the EDS and the alternative technologies that treat the EDS secondary waste streams. Although it focuses on the destruction of EDS neutralent, it also takes into consideration the ability of posttreatment technologies to process the more dilute water rinses that are used in the EDS following treatment with a reagent.
The U.S. Army is pilot testing chemical hydrolysis as a method for destroying the chemical agents stockpiled at Aberdeen, Maryland (HD mustard agent), and Newport, Indiana (VX nerve agent). The chemical agents at both locations, which are stored only in bulk ton containers, will be hydrolyzed (using aqueous sodium hydroxide for VX and water for HD) at slightly below the boiling temperature of the solution. The resulting hydrolysate at Aberdeen, which will contain thiodiglycol as the primary reaction product, will be treated by activated sludge biodegradation in sequencing batch reactors to oxidize organic constituents prior to discharge to an on-site federally owned wastewater treatment facility. The hydrolysate at Newport, which will contain a thiol amine and methyl phosphonic acid as the major reaction products, is not readily amenable to treatment by biodegradation. Therefore, organic constituents will be treated using supercritical water oxidation (SCWO). Integrated Design of Alternative Technologies for Bulk-Only Chemical Agent Disposal Facilities focuses on the overarching issues in the process designs integrating individual processing steps, including potential alternative configurations and process safety and reliability. This report reviews the acquisition design packages (ADPs) for the ABCDF and NECDF prepared by Stone and Webster Engineering Company for the U.S. Army.
The U.S. Army Program Manager for Assembled Chemical Weapons Alternatives (PMACWA) is charged with disposing of chemical weapons as stored at two sites: Pueblo, Colorado, and Blue Grass, Kentucky. In accordance with congressional mandates, technologies other than incineration are to be used if they are as safe and as cost effective. The weapons are to be disposed of in compliance with the Chemical Weapons Convention. Although an element of the U.S. Army, the PMACWA is responsible to the Assistant Secretary of Defense for Acquisitions, Technology, and Logistics for completing this mission. This book deals with the expected significant quantities of secondary wastes that will be generated during operations of the facilities and their closure. While there are only estimates for the waste quantities that will be generated, they provide a good basis for planning and developing alternatives for waste disposal while the plants are still in the design phase. Establishing efficient disposal options for the secondary wastes can enable more timely and cost-effective operation and closure of the facilities.
In 1996, Congress enacted directing the Department of Defense to assess and demonstrate technology alternatives to incineration for destruction of the chemical weapons stored at Pueblo Chemical and Blue Grass Army Depots. Since then, the National Research Council (NRC) has been carrying out evaluations of candidate technologies including reviews of engineering design studies and demonstration testing. Most recently, the NRC was asked by the Army to evaluate designs for pilot plants at Pueblo and Blue Grass. These pilot plants would use chemical neutralization for destroying the chemical agent and the energetics in the munitions stockpiles of these two depots. This report provides the interim assessment of the Pueblo Chemical Agent Destruction Pilot Plant (PCAPP) to permit adjustment of any significant problems as soon as possible. The report presents an analysis of the issues about the current PCAPP design and a series of findings and recommendations about ways to reduce concerns with involve the public more heavily in the process.
Because of concerns about incineration, the Department of Defense plans to use alternative means to destroy the chemical agent stockpiles at the Pueblo and Blue Grass facilities. The DOD contracted with Bechtel Parsons to design and operate pilot plants for this purpose. As part of the NRC efforts to assist the DOD with its chemical demilitarization efforts, the Department requested a review and assessment of the Bechtel designs for both plants. An earlier report presented an assessment of the Pueblo design. This report provides a review of the Blue Grass Chemical Agent Destruction Pilot Plant based on review of data and information about the initial design and some intermediate design data. Among other topics, the report presents technical risk assessment issues, an analysis of delivery and disassembly operations and of agent destruction core processes, and an examination of waste treatment.
This study is a review and evaluation of the U.S. Army's Report to Congress on Alternative Approaches for the Treatment and Disposal of Chemical Agent Identification Sets (CAIS). CAIS are test kits that were used to train soldiers from 1928 to 1969 in defensive responses to a chemical attack. They contain samples of chemicals that had been or might have been used by opponents as chemical warfare agents. The Army's baseline approach for treating and disposing of CAIS has been to develop a mobile treatment system, called the Rapid Response System (RRS), which can be carried by several large over-the-road trailers.
As the result of disposal practices from the early to mid-twentieth century, approximately 250 sites in 40 states, the District of Columbia, and 3 territories are known or suspected to have buried chemical warfare materiel (CWM). Much of this CWM is likely to occur in the form of small finds that necessitate the continuation of the Army's capability to transport treatment systems to disposal locations for destruction. Of greatest concern for the future are sites in residential areas and large sites on legacy military installations. The Army mission regarding the remediation of recovered chemical warfare materiel (RCWM) is turning into a program much larger than the existing munition and hazardous substance cleanup programs. The Army asked the Nation Research Council (NRC) to examine this evolving mission in part because this change is significant and becoming even more prominent as the stockpile destruction is nearing completion. One focus in this report is the current and future status of the Non-Stockpile Chemical Material Project (NSCMP), which now plays a central role in the remediation of recovered chemical warfare materiel and which reports to the Chemical Materials Agency. Remediation of Buried Chemical Warfare Materiel also reviews current supporting technologies for cleanup of CWM sites and surveys organizations involved with remediation of suspected CWM disposal sites to determine current practices and coordination. In this report, potential deficiencies in operational areas based on the review of current supporting technologies for cleanup of CWM sites and develop options for targeted research and development efforts to mitigate potential problem areas are identified.
The United States is in the process of destroying its chemical weapons stockpile. In 1996, Congress mandated that DOD demonstrate and select alternative methods to incineration at the Blue Grass and Pueblo sites. The Assembled Chemical Weapons Alternatives (ACWA) program was setup to oversee the development of these methods, and pilot plants were established at both sites. One of the new technologies being developed at the Blue Grass pilot plant are metal parts treaters (MPTs) to be used for the empty metal munitions cases. During recent testing, some issues arose with the MPTs that caused the ACWA to request a review by the NRC to investigate and determine their causes. This book presents a discussion of the MPT system; an assessment of the MPT testing activities; an analysis of thermal testing, modeling, and predicted throughput of the MPT; and an examination of the applicability of munitions treatment units under development at Pueblo for the Blue Grass pilot plant.
The Army's ability to meet public and congressional demands to destroy expeditiously all of the U.S. declared chemical weapons would be enhanced by the selection and acquisition of appropriate explosive destruction technologies (EDTs) to augment the main technologies to be used to destroy the chemical weapons currently at the Blue Grass Army Depot (BGAD) in Kentucky and the Pueblo Chemical Depot (PCD) in Colorado. The Army is considering four EDTs for the destruction of chemical weapons: three from private sector vendors, and a fourth, Army-developed explosive destruction system (EDS). This book updates earlier evaluations of these technologies, as well as any other viable detonation technologies, based on several considerations including process maturity, process efficacy, process throughput, process safety, public and regulatory acceptability, and secondary waste issues, among others. It also provides detailed information on each of the requirements at BGAD and PCD and rates each of the existing suitable EDTs plus the Army's EDS with respect to how well it satisfies these requirements.
The Chemical Weapons Convention requires, among other things, that the signatories to the conventionâ€"which includes the United Statesâ€"destroy by April 29, 2007, or as soon possible thereafter, any chemical warfare materiel that has been recovered from sites where it has been buried once discovered. For several years the United States and several other countries have been developing and using technologies to dispose of this non-stockpile materiel. To determine whether international efforts have resulted in technologies that would benefit the U.S. program, the U.S. Army asked the NRC to evaluate and compare such technologies to those now used by the United States. This book presents a discussion of factors used in the evaluations, summaries of evaluations of several promising international technologies for processing munitions and for agent-only processing, and summaries of other technologies that are less likely to be of benefit to the U.S. program at this time.
The United States has maintained a stockpile of chemical warfare agents and munitions since World War I. The Army leadership has sought outside, unbiased advice on how best to dispose of the stockpile. In 1987, at the request of the Under Secretary of the Army, the National Research Council (NRC) established the Committee on Review and Evaluation of the Army Chemical Stockpile Disposal Program (Stockpile Committee) to provide scientific and technical advice and counsel on the CSDP. This report is concerned with the technology selection for the Pueblo site, where only munitions containing mustard agent are stored. The report assesses a modified baseline process, a slightly simplified version of the baseline incineration system that was used to dispose of mustard munitions on Johnston Island. A second NRC committee is reviewing two neutralization-based technologies for possible use at Pueblo. The evaluation in this report is intended to assist authorities making the selection. It should also help the public and other non-Army stakeholders understand the modified baseline process and make sound judgments about it.
The U.S. Army is in the process of destroying the nation's stockpile of aging chemical weapons stored at eight locations in the continental United States and on Johnston Atoll in the Pacific. Originally, incineration was chosen for the destruction of these stores, but this method has met with public opposition, and Congress directed the Army to develop alternative technologies for destroying the stockpiles in Pueblo, CO and Richmond, KY. To assist the Army in this process, the NRC was asked to evaluate the engineering design study of the three Blue Grass candidates. This book presents an analysis of various issues pertaining to the proposed engineering design package for the Blue Grass facility.
For over a decade the Army has been carrying out a program aimed at the destruction of accumulated chemical weapons stored at several sites. While destruction by incineration has been successful, several incidentsâ€"called chemical eventsâ€"occurred during the disposal process or decontamination activities that raised some public concerns about the safety of operations of three third generation incineration facilities. As a result, the Congress asked the NRC to investigate whether the incidents provide information useful to help ensure safe operation of the future sites. This book presents an analysis of causes of and responses to past chemical events, implications of such events for ongoing and future demilitarization activities, and recommendations for preparing for future events.
Chemical warfare materiel (CWM) encompasses diverse items that were used during 60 years of efforts by the United States to develop a capability for conducting chemical warfare. Non-Stockpile CWM (NSCWM) is materiel not included in the current U.S. inventory of chemical munitions and includes buried materiel, recovered materiel, components of binary chemical weapons, former production facilities, and miscellaneous materiel. Because NSCWM is stored or buried at many locations, the Army is developing transportable treatment systems that can be moved from site to site as needed. Originally, the Army planned to develop three transportable treatment systems for nonstockpile chemical materiel: the rapid response system (RRS), the munitions management device (MMD), and the explosive destruction system (EDS). This report supplements an earlier report that evaluated eight alternative technologies for destruction of the liquid waste streams from two of the U.S. Army's transportable treatment systems for nonstockpile chemical materiel: the RRS and the MMD. This report evaluates the same technologies for the destruction of liquid waste streams produced by the EDS and discusses the regulatory approval issues and obstacles for the combined use of the EDS and the alternative technologies that treat the EDS secondary waste streams. Although it focuses on the destruction of EDS neutralent, it also takes into consideration the ability of posttreatment technologies to process the more dilute water rinses that are used in the EDS following treatment with a reagent.
Chemical warfare materiel (CWM) is a collection of diverse items that were used during 60 years of efforts by the United States to develop a capability for conducting chemical warfare. Nonstockpile CWM, which is not included in the current U.S. inventory of chemical munitions, includes buried materiel, recovered materiel, binary chemical weapons, former production facilities, and miscellaneous materiel. CWM that was buried in pits on former military sites is now being dug up as the land is being developed for other purposes. Other CWM is on or near the surface at former test and firing ranges. According to the Chemical Weapons Convention (CWC), which was ratified by the United States in April 1997, nonstockpile CWM items in storage at the time of ratification must be destroyed by 2007. The U.S. Army is the designated executive agent for destroying CWM. Nonstockpile CWM is being handled by the Non-Stockpile Chemical Materiel Program (NSCMP); stockpile CWM is the responsibility of the Chemical Stockpile Disposal Program. Because nonstockpile CWM is stored or buried in many locations, the Army is developing transportable disposal systems that can be moved from site to site as needed. The Army has plans to test prototypes of three transportable systems-the rapid response system (RRS), the munitions management device (MMD), and the explosive destruction system (EDS)-for accessing and destroying a range of nonstockpile chemical agents and militarized industrial chemicals. The RRS is designed to treat recovered chemical agent identification sets (CAIS), which contain small amounts of chemical agents and a variety of highly toxic industrial chemicals. The MMD is designed to treat nonexplosively configured chemical munitions. The EDS is designed to treat munitions containing chemical agents with energetics equivalent to three pounds of TNT or less. These munitions are considered too unstable to be transported or stored. A prototype EDS system has recently been tested in England by non-stockpile program personnel. Although originally proposed for evaluation in this report, no test data were available to the committee on the composition of wastes from the EDS. Therefore, alternative technologies for the destruction of EDS wastes will be discussed in a supplemental report in fall 2001. Treatment of solid wastes, such as metal munition bodies, packing materials, and carbon air filters, were excluded from this report. Review and Evaluation of the Army Non-Stockpile Chemical Materiel Disposal Program: Disposal of Neutralent Wastes evaluates the near-term (1999-2005) application of advanced (nonincineration) technologies, such as from the Army's Assembled Chemical Weapons Assessment Program and the Alternative Technologies and Approaches Project, in a semi-fixed, skid-mounted mode to process Rapid Response System, Munitions Management Device, and Explosive Destruction System liquid neutralization wastes.
The U.S. Army Chemical Stockpile Disposal Program was established with the goal of destroying the nation's stockpile of lethal unitary chemical weapons. Since 1990 the U.S. Army has been testing a baseline incineration technology on Johnston Island in the southern Pacific Ocean. Under the planned disposal program, this baseline technology will be imported in the mid to late 1990s to continental United States disposal facilities; construction will include eight stockpile storage sites. In early 1992 the Committee on Alternative Chemical Demilitarization Technologies was formed by the National Research Council to investigate potential alternatives to the baseline technology. This book, the result of its investigation, addresses the use of alternative destruction technologies to replace, partly or wholly, or to be used in addition to the baseline technology. The book considers principal technologies that might be applied to the disposal program, strategies that might be used to manage the stockpile, and combinations of technologies that might be employed.
The Army's ability to meet public and congressional demands to destroy expeditiously all of the U.S. declared chemical weapons would be enhanced by the selection and acquisition of appropriate explosive destruction technologies (EDTs) to augment the main technologies to be used to destroy the chemical weapons currently at the Blue Grass Army Depot (BGAD) in Kentucky and the Pueblo Chemical Depot (PCD) in Colorado. The Army is considering four EDTs for the destruction of chemical weapons: three from private sector vendors, and a fourth, Army-developed explosive destruction system (EDS). This book updates earlier evaluations of these technologies, as well as any other viable detonation technologies, based on several considerations including process maturity, process efficacy, process throughput, process safety, public and regulatory acceptability, and secondary waste issues, among others. It also provides detailed information on each of the requirements at BGAD and PCD and rates each of the existing suitable EDTs plus the Army's EDS with respect to how well it satisfies these requirements.
The Chemical Weapons Convention requires, among other things, that the signatories to the conventionâ€"which includes the United Statesâ€"destroy by April 29, 2007, or as soon possible thereafter, any chemical warfare materiel that has been recovered from sites where it has been buried once discovered. For several years the United States and several other countries have been developing and using technologies to dispose of this non-stockpile materiel. To determine whether international efforts have resulted in technologies that would benefit the U.S. program, the U.S. Army asked the NRC to evaluate and compare such technologies to those now used by the United States. This book presents a discussion of factors used in the evaluations, summaries of evaluations of several promising international technologies for processing munitions and for agent-only processing, and summaries of other technologies that are less likely to be of benefit to the U.S. program at this time.
The U.S. Army Chemical Stockpile Disposal Program was established with the goal of destroying the nation's stockpile of lethal unitary chemical weapons. Since 1990 the U.S. Army has been testing a baseline incineration technology on Johnston Island in the southern Pacific Ocean. Under the planned disposal program, this baseline technology will be imported in the mid to late 1990s to continental United States disposal facilities; construction will include eight stockpile storage sites. In early 1992 the Committee on Alternative Chemical Demilitarization Technologies was formed by the National Research Council to investigate potential alternatives to the baseline technology. This book, the result of its investigation, addresses the use of alternative destruction technologies to replace, partly or wholly, or to be used in addition to the baseline technology. The book considers principal technologies that might be applied to the disposal program, strategies that might be used to manage the stockpile, and combinations of technologies that might be employed.
The main approach adopted by the U.S. Army for destruction of all declared chemical weapon materiel (CWM) is incineration. There has been considerable public opposition to this approach, however, and the Army is developing a mix of fixed site and mobile treatment technologies to dispose of non-stockpile CWM. To assist in this effort, the Army requested NRC to review and evaluate these technologies, and to assess its plans for obtaining regulatory approval for and to involve the public in decisions about the application of those technologies. This book presents an assessment of non-stockpile treatment options and the application of these systems to the non-stockpile inventory, of regulatory and permitting issues, and of the role of the public.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.