The U.S. Army is in the process of destroying its chemical weapons stockpile and related, non-stockpile chemical materiel. At the request of the Army, the National Research Council (NRC) has published a number of studies over the last 16 years providing scientific and technical advice on that disposal effort. For this study, the NRC was asked to assess the design of the facility at the Pine Bluff (Arkansas) Arsenal intended to dispose of a large amount of non-stockpile materiel, including 1250 recovered old chemical weapons. This is the first of a series of studies directed at reviewing and assessing the Product Manager for Non-Stockpile Chemical Materiel initiatives for destruction of this materiel. The report provides the results of the Pine Bluff assessment. It includes a description of the Pine Bluff facility; a discussion of worker and public safety; management issues; regulatory, permitting, and public involvement; and the role of alternative destruction technologies currently residing at the facility.
The U.S. Army is in the process of destroying its chemical weapons stockpile and related, non-stockpile chemical materiel. At the request of the Army, the National Research Council (NRC) has published a number of studies over the last 16 years providing scientific and technical advice on that disposal effort. For this study, the NRC was asked to assess the design of the facility at the Pine Bluff (Arkansas) Arsenal intended to dispose of a large amount of non-stockpile materiel, including 1250 recovered old chemical weapons. This is the first of a series of studies directed at reviewing and assessing the Product Manager for Non-Stockpile Chemical Materiel initiatives for destruction of this materiel. The report provides the results of the Pine Bluff assessment. It includes a description of the Pine Bluff facility; a discussion of worker and public safety; management issues; regulatory, permitting, and public involvement; and the role of alternative destruction technologies currently residing at the facility.
The U.S. Army's Non-Stockpile Chemical Materiel program is responsible for dismantling former chemical agent production facilities and destroying recovered chemical materiel. In response to congressional requirements, the Center for Disease Control (CDC), in 2003, recommended new airborne exposure limits (AELs) to protect workforce and public health during operations to destroy this materiel. To assist in meeting these recommended limits, the U.S. Army asked the NRC for a review of its implementation plans for destruction of production facilities at the Newport Chemical Depot and the operation of two types of mobile destruction systems. This report presents the results of that review. It provides recommendations on analytical methods, on airborne containment monitoring, on operational procedures, on the applicability of the Resource Conservation and Recovery Act, and on involvement of workers and the public in implementation of the new AELs.
The U.S. Army is in the process of destroying its chemical weapons stockpile and related, non-stockpile chemical materiel. At the request of the Army, the National Research Council (NRC) has published a number of studies over the last 16 years providing scientific and technical advice on that disposal effort. For this study, the NRC was asked to assess the design of the facility at the Pine Bluff (Arkansas) Arsenal intended to dispose of a large amount of non-stockpile materiel, including 1250 recovered old chemical weapons. This is the first of a series of studies directed at reviewing and assessing the Product Manager for Non-Stockpile Chemical Materiel initiatives for destruction of this materiel. The report provides the results of the Pine Bluff assessment. It includes a description of the Pine Bluff facility; a discussion of worker and public safety; management issues; regulatory, permitting, and public involvement; and the role of alternative destruction technologies currently residing at the facility.
As the result of disposal practices from the early to mid-twentieth century, approximately 250 sites in 40 states, the District of Columbia, and 3 territories are known or suspected to have buried chemical warfare materiel (CWM). Much of this CWM is likely to occur in the form of small finds that necessitate the continuation of the Army's capability to transport treatment systems to disposal locations for destruction. Of greatest concern for the future are sites in residential areas and large sites on legacy military installations. The Army mission regarding the remediation of recovered chemical warfare materiel (RCWM) is turning into a program much larger than the existing munition and hazardous substance cleanup programs. The Army asked the Nation Research Council (NRC) to examine this evolving mission in part because this change is significant and becoming even more prominent as the stockpile destruction is nearing completion. One focus in this report is the current and future status of the Non-Stockpile Chemical Material Project (NSCMP), which now plays a central role in the remediation of recovered chemical warfare materiel and which reports to the Chemical Materials Agency. Remediation of Buried Chemical Warfare Materiel also reviews current supporting technologies for cleanup of CWM sites and surveys organizations involved with remediation of suspected CWM disposal sites to determine current practices and coordination. In this report, potential deficiencies in operational areas based on the review of current supporting technologies for cleanup of CWM sites and develop options for targeted research and development efforts to mitigate potential problem areas are identified.
The Chemical Weapons Convention requires, among other things, that the signatories to the conventionâ€"which includes the United Statesâ€"destroy by April 29, 2007, or as soon possible thereafter, any chemical warfare materiel that has been recovered from sites where it has been buried once discovered. For several years the United States and several other countries have been developing and using technologies to dispose of this non-stockpile materiel. To determine whether international efforts have resulted in technologies that would benefit the U.S. program, the U.S. Army asked the NRC to evaluate and compare such technologies to those now used by the United States. This book presents a discussion of factors used in the evaluations, summaries of evaluations of several promising international technologies for processing munitions and for agent-only processing, and summaries of other technologies that are less likely to be of benefit to the U.S. program at this time.
Chemical warfare materiel (CWM) encompasses diverse items that were used during 60 years of efforts by the United States to develop a capability for conducting chemical warfare. Non-Stockpile CWM (NSCWM) is materiel not included in the current U.S. inventory of chemical munitions and includes buried materiel, recovered materiel, components of binary chemical weapons, former production facilities, and miscellaneous materiel. Because NSCWM is stored or buried at many locations, the Army is developing transportable treatment systems that can be moved from site to site as needed. Originally, the Army planned to develop three transportable treatment systems for nonstockpile chemical materiel: the rapid response system (RRS), the munitions management device (MMD), and the explosive destruction system (EDS). This report supplements an earlier report that evaluated eight alternative technologies for destruction of the liquid waste streams from two of the U.S. Army's transportable treatment systems for nonstockpile chemical materiel: the RRS and the MMD. This report evaluates the same technologies for the destruction of liquid waste streams produced by the EDS and discusses the regulatory approval issues and obstacles for the combined use of the EDS and the alternative technologies that treat the EDS secondary waste streams. Although it focuses on the destruction of EDS neutralent, it also takes into consideration the ability of posttreatment technologies to process the more dilute water rinses that are used in the EDS following treatment with a reagent.
The United States is in the process of destroying its chemical weapons stockpile. In 1996, Congress mandated that DOD demonstrate and select alternative methods to incineration at the Blue Grass and Pueblo sites. The Assembled Chemical Weapons Alternatives (ACWA) program was setup to oversee the development of these methods, and pilot plants were established at both sites. One of the new technologies being developed at the Blue Grass pilot plant are metal parts treaters (MPTs) to be used for the empty metal munitions cases. During recent testing, some issues arose with the MPTs that caused the ACWA to request a review by the NRC to investigate and determine their causes. This book presents a discussion of the MPT system; an assessment of the MPT testing activities; an analysis of thermal testing, modeling, and predicted throughput of the MPT; and an examination of the applicability of munitions treatment units under development at Pueblo for the Blue Grass pilot plant.
The Army's ability to meet public and congressional demands to destroy expeditiously all of the U.S. declared chemical weapons would be enhanced by the selection and acquisition of appropriate explosive destruction technologies (EDTs) to augment the main technologies to be used to destroy the chemical weapons currently at the Blue Grass Army Depot (BGAD) in Kentucky and the Pueblo Chemical Depot (PCD) in Colorado. The Army is considering four EDTs for the destruction of chemical weapons: three from private sector vendors, and a fourth, Army-developed explosive destruction system (EDS). This book updates earlier evaluations of these technologies, as well as any other viable detonation technologies, based on several considerations including process maturity, process efficacy, process throughput, process safety, public and regulatory acceptability, and secondary waste issues, among others. It also provides detailed information on each of the requirements at BGAD and PCD and rates each of the existing suitable EDTs plus the Army's EDS with respect to how well it satisfies these requirements.
Under the direction of the U.S. Army's Chemical Materials Agency (CMA) and mandated by Congress, the nation is destroying its chemical weapons stockpile. Over the past several years, the Army has requested several studies from the NRC to assist with the stockpile destruction. This study was requested to advise the CMA about the status of analytical instrumentation technology and systems suitable for monitoring airborne chemical warfare agents at chemical weapons disposal and storage facilities. The report presents an assessment of current monitoring systems used for airborne agent detection at CMA facilities and of the applicability and availability of innovative new technologies. It also provides a review of how new regulatory requirements would affect the CMA's current agent monitoring procedures, and whether new measurement technologies are available and could be effectively incorporated into the CMA's overall chemical agent monitoring strategies.
This study is a review and evaluation of the U.S. Army's Report to Congress on Alternative Approaches for the Treatment and Disposal of Chemical Agent Identification Sets (CAIS). CAIS are test kits that were used to train soldiers from 1928 to 1969 in defensive responses to a chemical attack. They contain samples of chemicals that had been or might have been used by opponents as chemical warfare agents. The Army's baseline approach for treating and disposing of CAIS has been to develop a mobile treatment system, called the Rapid Response System (RRS), which can be carried by several large over-the-road trailers.
The main approach adopted by the U.S. Army for destruction of all declared chemical weapon materiel (CWM) is incineration. There has been considerable public opposition to this approach, however, and the Army is developing a mix of fixed site and mobile treatment technologies to dispose of non-stockpile CWM. To assist in this effort, the Army requested NRC to review and evaluate these technologies, and to assess its plans for obtaining regulatory approval for and to involve the public in decisions about the application of those technologies. This book presents an assessment of non-stockpile treatment options and the application of these systems to the non-stockpile inventory, of regulatory and permitting issues, and of the role of the public.
Chemical warfare materiel (CWM) is a collection of diverse items that were used during 60 years of efforts by the United States to develop a capability for conducting chemical warfare. Nonstockpile CWM, which is not included in the current U.S. inventory of chemical munitions, includes buried materiel, recovered materiel, binary chemical weapons, former production facilities, and miscellaneous materiel. CWM that was buried in pits on former military sites is now being dug up as the land is being developed for other purposes. Other CWM is on or near the surface at former test and firing ranges. According to the Chemical Weapons Convention (CWC), which was ratified by the United States in April 1997, nonstockpile CWM items in storage at the time of ratification must be destroyed by 2007. The U.S. Army is the designated executive agent for destroying CWM. Nonstockpile CWM is being handled by the Non-Stockpile Chemical Materiel Program (NSCMP); stockpile CWM is the responsibility of the Chemical Stockpile Disposal Program. Because nonstockpile CWM is stored or buried in many locations, the Army is developing transportable disposal systems that can be moved from site to site as needed. The Army has plans to test prototypes of three transportable systems-the rapid response system (RRS), the munitions management device (MMD), and the explosive destruction system (EDS)-for accessing and destroying a range of nonstockpile chemical agents and militarized industrial chemicals. The RRS is designed to treat recovered chemical agent identification sets (CAIS), which contain small amounts of chemical agents and a variety of highly toxic industrial chemicals. The MMD is designed to treat nonexplosively configured chemical munitions. The EDS is designed to treat munitions containing chemical agents with energetics equivalent to three pounds of TNT or less. These munitions are considered too unstable to be transported or stored. A prototype EDS system has recently been tested in England by non-stockpile program personnel. Although originally proposed for evaluation in this report, no test data were available to the committee on the composition of wastes from the EDS. Therefore, alternative technologies for the destruction of EDS wastes will be discussed in a supplemental report in fall 2001. Treatment of solid wastes, such as metal munition bodies, packing materials, and carbon air filters, were excluded from this report. Review and Evaluation of the Army Non-Stockpile Chemical Materiel Disposal Program: Disposal of Neutralent Wastes evaluates the near-term (1999-2005) application of advanced (nonincineration) technologies, such as from the Army's Assembled Chemical Weapons Assessment Program and the Alternative Technologies and Approaches Project, in a semi-fixed, skid-mounted mode to process Rapid Response System, Munitions Management Device, and Explosive Destruction System liquid neutralization wastes.
As the result of disposal practices from the early to mid-twentieth century, approximately 250 sites in 40 states, the District of Columbia, and 3 territories are known or suspected to have buried chemical warfare materiel (CWM). Much of this CWM is likely to occur in the form of small finds that necessitate the continuation of the Army's capability to transport treatment systems to disposal locations for destruction. Of greatest concern for the future are sites in residential areas and large sites on legacy military installations. The Army mission regarding the remediation of recovered chemical warfare materiel (RCWM) is turning into a program much larger than the existing munition and hazardous substance cleanup programs. The Army asked the Nation Research Council (NRC) to examine this evolving mission in part because this change is significant and becoming even more prominent as the stockpile destruction is nearing completion. One focus in this report is the current and future status of the Non-Stockpile Chemical Material Project (NSCMP), which now plays a central role in the remediation of recovered chemical warfare materiel and which reports to the Chemical Materials Agency. Remediation of Buried Chemical Warfare Materiel also reviews current supporting technologies for cleanup of CWM sites and surveys organizations involved with remediation of suspected CWM disposal sites to determine current practices and coordination. In this report, potential deficiencies in operational areas based on the review of current supporting technologies for cleanup of CWM sites and develop options for targeted research and development efforts to mitigate potential problem areas are identified.
The U.S. Army's Non-Stockpile Chemical Materiel program is responsible for dismantling former chemical agent production facilities and destroying recovered chemical materiel. In response to congressional requirements, the Center for Disease Control (CDC), in 2003, recommended new airborne exposure limits (AELs) to protect workforce and public health during operations to destroy this materiel. To assist in meeting these recommended limits, the U.S. Army asked the NRC for a review of its implementation plans for destruction of production facilities at the Newport Chemical Depot and the operation of two types of mobile destruction systems. This report presents the results of that review. It provides recommendations on analytical methods, on airborne containment monitoring, on operational procedures, on the applicability of the Resource Conservation and Recovery Act, and on involvement of workers and the public in implementation of the new AELs.
The Chemical Weapons Convention requires, among other things, that the signatories to the conventionâ€"which includes the United Statesâ€"destroy by April 29, 2007, or as soon possible thereafter, any chemical warfare materiel that has been recovered from sites where it has been buried once discovered. For several years the United States and several other countries have been developing and using technologies to dispose of this non-stockpile materiel. To determine whether international efforts have resulted in technologies that would benefit the U.S. program, the U.S. Army asked the NRC to evaluate and compare such technologies to those now used by the United States. This book presents a discussion of factors used in the evaluations, summaries of evaluations of several promising international technologies for processing munitions and for agent-only processing, and summaries of other technologies that are less likely to be of benefit to the U.S. program at this time.
Chemical warfare materiel (CWM) encompasses diverse items that were used during 60 years of efforts by the United States to develop a capability for conducting chemical warfare. Non-Stockpile CWM (NSCWM) is materiel not included in the current U.S. inventory of chemical munitions and includes buried materiel, recovered materiel, components of binary chemical weapons, former production facilities, and miscellaneous materiel. Because NSCWM is stored or buried at many locations, the Army is developing transportable treatment systems that can be moved from site to site as needed. Originally, the Army planned to develop three transportable treatment systems for nonstockpile chemical materiel: the rapid response system (RRS), the munitions management device (MMD), and the explosive destruction system (EDS). This report supplements an earlier report that evaluated eight alternative technologies for destruction of the liquid waste streams from two of the U.S. Army's transportable treatment systems for nonstockpile chemical materiel: the RRS and the MMD. This report evaluates the same technologies for the destruction of liquid waste streams produced by the EDS and discusses the regulatory approval issues and obstacles for the combined use of the EDS and the alternative technologies that treat the EDS secondary waste streams. Although it focuses on the destruction of EDS neutralent, it also takes into consideration the ability of posttreatment technologies to process the more dilute water rinses that are used in the EDS following treatment with a reagent.
The U.S. Army is in the process of destroying its entire stock of chemical weapons. To help with stockpile disposal, the Army's Chemical Stockpile Disposal Program (CSDP), in 1987, asked the National Research Council (NRC) for scientific and technical advice. This report is one in a series of such prepared by the NRC over the last 16 years in response to that request. It presents an examination of the effect of leaking munitions (leakers) and other anomalies in the stored stockpile on the operation of the chemical agent disposal facilities. The report presents a discussion of potential causes of these anomalies, leaker tracking and analysis issues, risk implications of anomalies, and recommendations for monitoring and containing these anomalies during the remaining life of the stockpile.
By the end of 2009, more than 60 percent of the global chemical weapons stockpile declared by signatories to the Chemical Weapons Convention will have been destroyed, and of the 184 signatories, only three countries will possess chemical weapons-the United States, Russia, and Libya. In the United States, destruction of the chemical weapons stockpile began in 1990, when Congress mandated that the Army and its contractors destroy the stockpile while ensuring maximum safety for workers, the public, and the environment. The destruction program has proceeded without serious exposure of any worker or member of the public to chemical agents, and risk to the public from a storage incident involving the aging stockpile has been reduced by more than 90 percent from what it was at the time destruction began on Johnston Island and in the continental United States. At this time, safety at chemical agent disposal facilities is far better than the national average for all industries. Even so, the Army and its contractors are desirous of further improvement. To this end, the Chemical Materials Agency (CMA) asked the NRC to assist by reviewing CMA's existing safety and environmental metrics and making recommendations on which additional metrics might be developed to further improve its safety and environmental programs.
The U.S. Army is in the process of destroying the nation's stockpile of aging chemical weapons stored at eight locations in the continental United States and on Johnston Atoll in the Pacific. Originally, incineration was chosen for the destruction of these stores, but this method has met with public opposition, and Congress directed the Army to develop alternative technologies for destroying the stockpiles in Pueblo, CO and Richmond, KY. To assist the Army in this process, the NRC was asked to evaluate the engineering design study of the three Blue Grass candidates. This book presents an analysis of various issues pertaining to the proposed engineering design package for the Blue Grass facility.
This report reviews the status of the U.S. Army Chemical Stockpile Disposal Program (CSDP) operations at Tooele, Utah, with respect to previous recommendations and observations made by the National Research Council (NRC) Committee on Review and Evaluation of the Army Chemical Stockpile Disposal Program (Stockpile Committee). The committee recognizes actions that have satisfied recommendations, identifies recommendations that require further action, and provides additional recommendations for improving the overall CSDP performance at the Tooele Chemical Agent Disposal Facility (TOCDF), Tooele, Utah, and other sites.
The Program Manager for Assembled Chemical Weapons Assessment (PMACWA) of the Department of Defense (DOD) requested the National Research Council (NRC) to assess the engineering design studies (EDSs) developed by Parsons/Honeywell and General Atomics for a chemical demilitarization facility to completely dispose of the assembled chemical weapons at the Pueblo Chemical Depot in Pueblo, Colorado. To accomplish the task, the NRC formed the Committee on Review and Evaluation of Alternative Technologies for Demilitarization of Assembled Chemical Weapons: Phase II (ACW II Committee). This report presents the results of the committee's scientific and technical assessment, which will assist the Office of the Secretary of Defense in selecting the technology package for destroying the chemical munitions at Pueblo. The committee evaluated the engineering design packages proposed by the technology providers and the associated experimental studies that were performed to validate unproven unit operations. A significant part of the testing program involved expanding the technology base for the hydrolysis of energetic materials associated with assembled weapons. This process was a concern expressed by the Committee on Review and Evaluation of Alternative Technologies for Demilitarization of Assembled Chemical Weapons (ACW I Committee) in its original report in 1999 (NRC, 1999). The present study took place as the experimental studies were in progress. In some cases, tests for some of the supporting unit operations were not completed in time for the committee to incorporate results into its evaluation. In those cases, the committee identified and discussed potential problem areas in these operations. Based on its expertise and its aggressive data-gathering activities, the committee was able to conduct a comprehensive review of the test data that had been completed for the overall system design. This report summarizes the study.
For over a decade the Army has been carrying out a program aimed at the destruction of accumulated chemical weapons stored at several sites. While destruction by incineration has been successful, several incidentsâ€"called chemical eventsâ€"occurred during the disposal process or decontamination activities that raised some public concerns about the safety of operations of three third generation incineration facilities. As a result, the Congress asked the NRC to investigate whether the incidents provide information useful to help ensure safe operation of the future sites. This book presents an analysis of causes of and responses to past chemical events, implications of such events for ongoing and future demilitarization activities, and recommendations for preparing for future events.
This report examines seven disposal technologies being considered by the U.S. government as alternative methods to the process of incineration for destroying mortars, rockets, land mines, and other weapons that contain chemical warfare agents, such as mustard gas. These weapons are considered especially dangerous because they contain both chemical warfare agent and explosive materials in an assembled package that must be disassembled for destruction. The study identifies the strengths and weaknesses and advantages and disadvantages of each technology and assesses their potential for full-scale implementation.
In 1996, the U.S. Congress enacted two laws, Public Law 104-201 (authorization legislation) and Public Law 104-208 (appropriation legislation), mandating that the U.S. Department of Defense (DOD) conduct an assessment of alternative technologies to the baseline incineration process for the demilitarization of assembled chemical munitions. The PMACWA had previously requested that the National Research Council (NRC) perform and publish an independent evaluation of the seven technologies packages that had been selected during earlier phases of the Assembled Chemical Weapons Assessment (ACWA) program and deliver a report by September 1, 1999. However, to meet that deadline, the NRC Committee on Review and Evaluation of Alternative Technologies for Demilitarization of Assembled Chemical Weapons (ACW Committee) had to terminate its data-gathering activities on March 15, 1999, prior to the completion of demonstration tests. In September 1999, the PMACWA requested that the ACW Committee examine the reports of the demonstration tests and determine if the results changed the committee's original findings, recommendations, and comments. Evaluation of Demonstration Test Results of Alternative Technologies for Demilitarization of Assembled Chemical Weapons documents the committee's reassessment of the findings and recommendations in the original report, Review and Evaluation of Alternative Technologies for Demilitarization of Assembled Chemical Weapons.
In 1985, Congress mandated the destruction of the stockpile of M55 rockets stored at several chemical weapons storage sites in the United States and its possessions because of the risk that the rockets may self-ignite. Risk assessments performed by the Army indicate the risk to the public is dominated by M55 rockets containing the nerve agent sarin (GB). During the disposal of these GB M55 rockets at a site in Tooele, Utah, it was discovered that the agent had gelled in a significant percentage of the rockets. In these cases, the standard destruction method would not work. The Army devised an alternate mechanism for incinerating the gelled rockets, but the State of Utah limited their disposal rate using this process. The Army, however, has since developed plans for increasing the destruction rate of gelled rockets and proposes that this method be used at Anniston Chemical Agent Disposal Facility (ANCDF) in Anniston, Alabama. To assist in this effort, the Army asked the National Research Council (NRC) to evaluate the Army's plan for higher destruction rates. Former Congressman Robert Riley (now Alabama's governor) also requested an NRC assessment. This study was carried out by the NRC ad hoc Committee on Review of Army Planning for the Disposal of M55 Rockets at the Anniston Chemical Agent Disposal Facility.
In 1993, at Tooele Army Depot, Utah, the Army completed construction of the Tooele Chemical Agent Disposal Facility (TOCDF), the first complete facility for destruction of lethal unitary chemical agents and munitions to be built in the continental United States. The TOCDF will employ the Army's baseline incineration system to destroy the depot's increment of the nation's aging unitary chemical stockpile. This book assesses Army changes and improvements to the TOCDF in response to recommendations contained in earlier reports of the committee. It assesses aspects of the facility's readiness for safe agent handling and destruction operations, its agent monitoring system, and its site specific risk assessment.
Under the direction of the U.S. Army's Chemical Materials Agency (CMA) and mandated by Congress, the nation is destroying its chemical weapons stockpile. Large quantities of secondary waste are being generated in the process, and managing these wastes safely and effectively is a critical part of CMA's weapons disposal program. To assist, the CMA asked the NRC to examine the environmental and regulatory requirements that secondary waste treatment is subject to, and to assess best practices by industry in meeting such requirements for similar facilities. This book presents an overview of secondary wastes from chemical agent disposal facilities (CDF), a comparison of CDF and industry experience, site-specific analysis of major secondary waste issues, an examination of closure wastes, and findings and recommendations.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.