In a world where advanced knowledge is widespread and low-cost labor is readily available, U.S. advantages in the marketplace and in science and technology have begun to erode. A comprehensive and coordinated federal effort is urgently needed to bolster U.S. competitiveness and pre-eminence in these areas. This congressionally requested report by a pre-eminent committee makes four recommendations along with 20 implementation actions that federal policy-makers should take to create high-quality jobs and focus new science and technology efforts on meeting the nation's needs, especially in the area of clean, affordable energy: 1) Increase America's talent pool by vastly improving K-12 mathematics and science education; 2) Sustain and strengthen the nation's commitment to long-term basic research; 3) Develop, recruit, and retain top students, scientists, and engineers from both the U.S. and abroad; and 4) Ensure that the United States is the premier place in the world for innovation. Some actions will involve changing existing laws, while others will require financial support that would come from reallocating existing budgets or increasing them. Rising Above the Gathering Storm will be of great interest to federal and state government agencies, educators and schools, public decision makers, research sponsors, regulatory analysts, and scholars.
The federal role in precollege science, technology, engineering, and mathematics (STEM) education is receiving increasing attention in light of the need to support public understanding of science and to develop a strong scientific and technical workforce in a competitive global economy. Federal science agencies, such as the National Aeronautics and Space Administration (NASA), are being looked to as a resource for enhancing precollege STEM education and bringing more young people to scientific and technical careers. For NASA and other federal science agencies, concerns about workforce and public understanding of science also have an immediate local dimension. The agency faces an aerospace workforce skewed toward those close to retirement and job recruitment competition for those with science and engineering degrees. In addition, public support for the agency's missions stems in part from public understanding of the importance of the agency's contributions in science, engineering, and space exploration. In the NASA authorization act of 2005 (P.L. 109-555 Subtitle B-Education, Sec. 614) Congress directed the agency to support a review and evaluation of its precollege education program to be carried out by the National Research Council (NRC). NASA's Elementary and Secondary Education Program: Review and Critique includes recommendations to improve the effectiveness of the program and addresses these four tasks: 1. an evaluation of the effectiveness of the overall program in meeting its defined goals and objectives; 2. an assessment of the quality and educational effectiveness of the major components of the program, including an evaluation of the adequacy of assessment metrics and data collection requirements available for determining the effectiveness of individual projects; 3. an evaluation of the funding priorities in the program, including a review of the funding level and trend for each major component of the program and an assessment of whether the resources made available are consistent with meeting identified goals and priorities; and 4. a determination of the extent and effectiveness of coordination and collaboration between NASA and other federal agencies that sponsor science, technology, and mathematics education activities.
Nearly 40 percent of the students entering 2- and 4-year postsecondary institutions indicated their intention to major in science, technology, engineering, and mathematics (STEM) in 2012. But the barriers to students realizing their ambitions are reflected in the fact that about half of those with the intention to earn a STEM bachelor's degree and more than two-thirds intending to earn a STEM associate's degree fail to earn these degrees 4 to 6 years after their initial enrollment. Many of those who do obtain a degree take longer than the advertised length of the programs, thus raising the cost of their education. Are the STEM educational pathways any less efficient than for other fields of study? How might the losses be "stemmed" and greater efficiencies realized? These questions and others are at the heart of this study. Barriers and Opportunities for 2-Year and 4-Year STEM Degrees reviews research on the roles that people, processes, and institutions play in 2-and 4-year STEM degree production. This study pays special attention to the factors that influence students' decisions to enter, stay in, or leave STEM majorsâ€"quality of instruction, grading policies, course sequences, undergraduate learning environments, student supports, co-curricular activities, students' general academic preparedness and competence in science, family background, and governmental and institutional policies that affect STEM educational pathways. Because many students do not take the traditional 4-year path to a STEM undergraduate degree, Barriers and Opportunities describes several other common pathways and also reviews what happens to those who do not complete the journey to a degree. This book describes the major changes in student demographics; how students, view, value, and utilize programs of higher education; and how institutions can adapt to support successful student outcomes. In doing so, Barriers and Opportunities questions whether definitions and characteristics of what constitutes success in STEM should change. As this book explores these issues, it identifies where further research is needed to build a system that works for all students who aspire to STEM degrees. The conclusions of this report lay out the steps that faculty, STEM departments, colleges and universities, professional societies, and others can take to improve STEM education for all students interested in a STEM degree.
International Education and Foreign Languages reviews the Department of Education's Title VI and Fulbright-Hays Programs, which provide higher education funding for international education and foreign language programs. This book offers a timely look at issues that are increasingly important in an interconnected world. It discusses the effect of the nation's lack of expertise in foreign languages and cultural knowledge on national security and global competitiveness and it describes the challenges faced by the U.S. educational system and the federal government in trying to address those needs. The book also examines the federal government's recent proposal to create a new National Security Language Initiative, the role of the Department of Education, and current efforts to hold higher education programs accountable. This book provides information and recommendations that can help universities, educators, and policy makers establish a system of foreign language and international education that is ready to respond to new and unanticipated challenges around the world.
Science is a way of knowing about the world. At once a process, a product, and an institution, science enables people to both engage in the construction of new knowledge as well as use information to achieve desired ends. Access to scienceâ€"whether using knowledge or creating itâ€"necessitates some level of familiarity with the enterprise and practice of science: we refer to this as science literacy. Science literacy is desirable not only for individuals, but also for the health and well- being of communities and society. More than just basic knowledge of science facts, contemporary definitions of science literacy have expanded to include understandings of scientific processes and practices, familiarity with how science and scientists work, a capacity to weigh and evaluate the products of science, and an ability to engage in civic decisions about the value of science. Although science literacy has traditionally been seen as the responsibility of individuals, individuals are nested within communities that are nested within societiesâ€"and, as a result, individual science literacy is limited or enhanced by the circumstances of that nesting. Science Literacy studies the role of science literacy in public support of science. This report synthesizes the available research literature on science literacy, makes recommendations on the need to improve the understanding of science and scientific research in the United States, and considers the relationship between scientific literacy and support for and use of science and research.
In the face of so many daunting near-term challenges, U.S. government and industry are letting the crucial strategic issues of U.S. competitiveness slip below the surface. Five years ago, the National Academies prepared Rising Above the Gathering Storm, a book that cautioned: "Without a renewed effort to bolster the foundations of our competitiveness, we can expect to lose our privileged position." Since that time we find ourselves in a country where much has changed-and a great deal has not changed. So where does America stand relative to its position of five years ago when the Gathering Storm book was prepared? The unanimous view of the authors is that our nation's outlook has worsened. The present volume, Rising Above the Gathering Storm, Revisited, explores the tipping point America now faces. Addressing America's competitiveness challenge will require many years if not decades; however, the requisite federal funding of much of that effort is about to terminate. Rising Above the Gathering Storm, Revisited provides a snapshot of the work of the government and the private sector in the past five years, analyzing how the original recommendations have or have not been acted upon, what consequences this may have on future competitiveness, and priorities going forward. In addition, readers will find a series of thought- and discussion-provoking factoids-many of them alarming-about the state of science and innovation in America. Rising Above the Gathering Storm, Revisited is a wake-up call. To reverse the foreboding outlook will require a sustained commitment by both individual citizens and government officials-at all levels. This book, together with the original Gathering Storm volume, provides the roadmap to meet that goal. While this book is essential for policy makers, anyone concerned with the future of innovation, competitiveness, and the standard of living in the United States will find this book an ideal tool for engaging their government representatives, peers, and community about this momentous issue.
Teachers make a difference. The success of any plan for improving educational outcomes depends on the teachers who carry it out and thus on the abilities of those attracted to the field and their preparation. Yet there are many questions about how teachers are being prepared and how they ought to be prepared. Yet, teacher preparation is often treated as an afterthought in discussions of improving the public education system. Preparing Teachers addresses the issue of teacher preparation with specific attention to reading, mathematics, and science. The book evaluates the characteristics of the candidates who enter teacher preparation programs, the sorts of instruction and experiences teacher candidates receive in preparation programs, and the extent that the required instruction and experiences are consistent with converging scientific evidence. Preparing Teachers also identifies a need for a data collection model to provide valid and reliable information about the content knowledge, pedagogical competence, and effectiveness of graduates from the various kinds of teacher preparation programs. Federal and state policy makers need reliable, outcomes-based information to make sound decisions, and teacher educators need to know how best to contribute to the development of effective teachers. Clearer understanding of the content and character of effective teacher preparation is critical to improving it and to ensuring that the same critiques and questions are not being repeated 10 years from now.
Undergraduate research has a rich history, and many practicing researchers point to undergraduate research experiences (UREs) as crucial to their own career success. There are many ongoing efforts to improve undergraduate science, technology, engineering, and mathematics (STEM) education that focus on increasing the active engagement of students and decreasing traditional lecture-based teaching, and UREs have been proposed as a solution to these efforts and may be a key strategy for broadening participation in STEM. In light of the proposals questions have been asked about what is known about student participation in UREs, best practices in UREs design, and evidence of beneficial outcomes from UREs. Undergraduate Research Experiences for STEM Students provides a comprehensive overview of and insights about the current and rapidly evolving types of UREs, in an effort to improve understanding of the complexity of UREs in terms of their content, their surrounding context, the diversity of the student participants, and the opportunities for learning provided by a research experience. This study analyzes UREs by considering them as part of a learning system that is shaped by forces related to national policy, institutional leadership, and departmental culture, as well as by the interactions among faculty, other mentors, and students. The report provides a set of questions to be considered by those implementing UREs as well as an agenda for future research that can help answer questions about how UREs work and which aspects of the experiences are most powerful.
Currently, many states are adopting the Next Generation Science Standards (NGSS) or are revising their own state standards in ways that reflect the NGSS. For students and schools, the implementation of any science standards rests with teachers. For those teachers, an evolving understanding about how best to teach science represents a significant transition in the way science is currently taught in most classrooms and it will require most science teachers to change how they teach. That change will require learning opportunities for teachers that reinforce and expand their knowledge of the major ideas and concepts in science, their familiarity with a range of instructional strategies, and the skills to implement those strategies in the classroom. Providing these kinds of learning opportunities in turn will require profound changes to current approaches to supporting teachers' learning across their careers, from their initial training to continuing professional development. A teacher's capability to improve students' scientific understanding is heavily influenced by the school and district in which they work, the community in which the school is located, and the larger professional communities to which they belong. Science Teachers' Learning provides guidance for schools and districts on how best to support teachers' learning and how to implement successful programs for professional development. This report makes actionable recommendations for science teachers' learning that take a broad view of what is known about science education, how and when teachers learn, and education policies that directly and indirectly shape what teachers are able to learn and teach. The challenge of developing the expertise teachers need to implement the NGSS presents an opportunity to rethink professional learning for science teachers. Science Teachers' Learning will be a valuable resource for classrooms, departments, schools, districts, and professional organizations as they move to new ways to teach science.
At a time when scientific and technological competence is vital to the nation's future, the weak performance of U.S. students in science reflects the uneven quality of current science education. Although young children come to school with innate curiosity and intuitive ideas about the world around them, science classes rarely tap this potential. Many experts have called for a new approach to science education, based on recent and ongoing research on teaching and learning. In this approach, simulations and games could play a significant role by addressing many goals and mechanisms for learning science: the motivation to learn science, conceptual understanding, science process skills, understanding of the nature of science, scientific discourse and argumentation, and identification with science and science learning. To explore this potential, Learning Science: Computer Games, Simulations, and Education, reviews the available research on learning science through interaction with digital simulations and games. It considers the potential of digital games and simulations to contribute to learning science in schools, in informal out-of-school settings, and everyday life. The book also identifies the areas in which more research and research-based development is needed to fully capitalize on this potential. Learning Science will guide academic researchers; developers, publishers, and entrepreneurs from the digital simulation and gaming community; and education practitioners and policy makers toward the formation of research and development partnerships that will facilitate rich intellectual collaboration. Industry, government agencies and foundations will play a significant role through start-up and ongoing support to ensure that digital games and simulations will not only excite and entertain, but also motivate and educate.
Early childhood mathematics is vitally important for young children's present and future educational success. Research demonstrates that virtually all young children have the capability to learn and become competent in mathematics. Furthermore, young children enjoy their early informal experiences with mathematics. Unfortunately, many children's potential in mathematics is not fully realized, especially those children who are economically disadvantaged. This is due, in part, to a lack of opportunities to learn mathematics in early childhood settings or through everyday experiences in the home and in their communities. Improvements in early childhood mathematics education can provide young children with the foundation for school success. Relying on a comprehensive review of the research, Mathematics Learning in Early Childhood lays out the critical areas that should be the focus of young children's early mathematics education, explores the extent to which they are currently being incorporated in early childhood settings, and identifies the changes needed to improve the quality of mathematics experiences for young children. This book serves as a call to action to improve the state of early childhood mathematics. It will be especially useful for policy makers and practitioners-those who work directly with children and their families in shaping the policies that affect the education of young children.
The National Research Council (NRC) was asked by the National Defense Intelligence College (NDIC) to convene a committee to review the curriculum and syllabi for their proposed master of science degree in science and technology intelligence. The NRC was asked to review the material provided by the NDIC and offer advice and recommendations regarding the program's structure and goals of the Master of Science and Technology Intelligence (MS&TI) program. The Committee for the Review of the Master's Degree Program for Science and Technology Professionals convened in May 2011, received extensive briefings and material from the NDIC faculty and administrators, and commenced a detailed review of the material. This letter report contains the findings and recommendations of the committee. Review of the National Defense Intelligence College's Master's Degree in Science and Technology Intelligence centers on two general areas. First, the committee found that the biological sciences and systems engineering were underrepresented in the existing program structure. Secondly, the committee recommends that the NDIC faculty restructure the program and course learning objectives to focus more specifically on science and technology, with particular emphasis on the empirical measurement of student achievement. Given the dynamic and ever-changing nature of science and technology, the syllabi should continue to evolve as change occurs.
The United States is among the wealthiest nations in the world, but it is far from the healthiest. Although life expectancy and survival rates in the United States have improved dramatically over the past century, Americans live shorter lives and experience more injuries and illnesses than people in other high-income countries. The U.S. health disadvantage cannot be attributed solely to the adverse health status of racial or ethnic minorities or poor people: even highly advantaged Americans are in worse health than their counterparts in other, "peer" countries. In light of the new and growing evidence about the U.S. health disadvantage, the National Institutes of Health asked the National Research Council (NRC) and the Institute of Medicine (IOM) to convene a panel of experts to study the issue. The Panel on Understanding Cross-National Health Differences Among High-Income Countries examined whether the U.S. health disadvantage exists across the life span, considered potential explanations, and assessed the larger implications of the findings. U.S. Health in International Perspective presents detailed evidence on the issue, explores the possible explanations for the shorter and less healthy lives of Americans than those of people in comparable countries, and recommends actions by both government and nongovernment agencies and organizations to address the U.S. health disadvantage.
Responding to the challenges of fostering regional growth and employment in an increasingly competitive global economy, many U.S. states and regions have developed programs to attract and grow companies as well as attract the talent and resources necessary to develop innovation clusters. These state and regionally based initiatives have a broad range of goals and increasingly include significant resources, often with a sectoral focus and often in partnership with foundations and universities. These are being joined by recent initiatives to coordinate and concentrate investments from a variety of federal agencies that provide significant resources to develop regional centers of innovation, business incubators, and other strategies to encourage entrepreneurship and high-tech development. This has led to renewed interest in understanding the nature of innovation clusters and public policies associated with successful cluster development. The Board on Science, Technology, and Economic Policy (STEP), conducted a symposium which brought together state and federal government officials, leading analysts, congressional staff, and other stakeholders to explore the role of clusters in promoting economic growth, the government's role in stimulating clusters, and the role of universities and foundations in their development. Growing Innovation Clusters for American Prosperity captures the presentations and discussions of the 2009 STEP symposium on innovation clusters. It includes an overview highlighting key issues raised at the meeting and a summary of the meeting's presentations. This report has been prepared by the workshop rapporteur as a factual summary of what occurred at the workshop.
The Manufacturing Extension Partnership (MEP) - a program of the U.S. Department of Commerce's National Institute of Standards and Technology - has sought for more than two decades to strengthen American manufacturing. It is a national network of affiliated manufacturing extension centers and field offices located throughout all fifty states and Puerto Rico. Funding for MEP Centers comes from a combination of federal, state, local and private resources. Centers work directly with manufacturing firms in their state or sub-state region. MEP Centers provide expertise, services and assistance directed toward improving growth, supply chain positioning, leveraging emerging technologies, improving manufacturing processes, work force training, and the application and implementation of information in client companies through direct assistance provided by Center staff and from partner organizations and third party consultants. 21st Century Manufacturing seeks to generate a better understanding of the operation, achievements, and challenges of the MEP program in its mission to support, strengthen, and grow U.S. manufacturing. This report identifies and reviews similar national programs from abroad in order to draw on foreign practices, funding levels, and accomplishments as a point of reference and discusses current needs and initiatives in light of the global focus on advanced manufacturing,
Mandated standards used for vehicle airbags, International Organization for Standards (ISO) standards adopted for photographic film, de facto standards for computer softwareâ€"however they arise, standards play a fundamental role in the global marketplace. Standards, Conformity Assessment, and Trade provides a comprehensive, up-to-date analysis of the link between standards, product testing and certification, and U.S. economic performance. The book includes recommendations for streamlining standards development, increasing the efficiency of product testing and certification, and promoting the success of U.S. exports in world markets. The volume offers a critical examination of organizations involved in standards and identifies the urgent improvements needed in the U.S. system for conformity assessment, in which adherence to standards is assessed and certified. Among other key issues, the book explores the role of government regulation, laboratory accreditation, and the overlapping of multiple quality standards in product development and manufacturing. In one of the first treatments of this subject, Standards, Conformity Assessment, and Trade offers a unique and highly valuable analysis of the impact of standards and conformity assessment on global trade.
Energy and mineral resources are essential for the nation's fundamental functions, its economy, and security. Nonfuel minerals are essential for the existence and operations of products that are used by people every day and are provided by various sectors of the mining industry. Energy in the United States is provided from a variety of resources including fossil fuels, and renewable and nuclear energy, all with established commercial industry bases. The United States is the largest electric power producer in the world. The overall value added to the U.S. gross domestic product (GDP) in 2011 by major industries that consumed processed nonfuel mineral materials was $2.2 trillion. Recognizing the importance of understanding the state of the energy and mining workforce in the United States to assure a trained and skilled workforce of sufficient size for the future, the Department of Energy's (DOE's) National Energy technology Laboratory (NETL) contracted with the National Research Council (NRC) to perform a study of the emerging workforce trends in the U.S. energy and mining industries. Emerging Workforce Trends in the U.S. Energy and Mining Industries: A Call to Action summarizes the findings of this study.
New York's Nanotechnology Model: Building the Innovation Economy is the summary of a 2013 symposium convened by the National Research Council Board on Science, Technology, and Economic Policy and members of the Nano Consortium that drew state officials and staff, business leaders, and leading national figures in early-stage finance, technology, engineering, education, and state and federal policies to review challenges, plans, and opportunities for innovation-led growth in New York. The symposium participants assessed New York's academic, industrial, and human resources, identified key policy issues, and engaged in a discussion of how the state might leverage regional development organizations, state initiatives, and national programs focused on manufacturing and innovation to support its economic development goals. This report highlights the accomplishments and growth of the innovation ecosystem in New York, while also identifying needs, challenges, and opportunities. New York's Nanotechnology Model reviews the development of the Albany nanotech cluster and its usefulness as a model for innovation-based growth, while also discussing the New York innovation ecosystem more broadly.
The Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs provide federal research and development funding to small businesses. In 2008, the National Research Council completed a comprehensive assessment of the SBIR and STTR programs. The first-round study found that the programs were "sound in concept and effective in practice." Building on the outcomes from the Phase I study, this second phase examines both topics of general policy interest that emerged during the first phase and topics of specific interest to individual agencies, and provides a second snapshot to measure the program's progress against its legislative goals.
America's position as the source of much of the world's global innovation has been the foundation of its economic vitality and military power in the post-war. No longer is U.S. pre-eminence assured as a place to turn laboratory discoveries into new commercial products, companies, industries, and high-paying jobs. As the pillars of the U.S. innovation system erode through wavering financial and policy support, the rest of the world is racing to improve its capacity to generate new technologies and products, attract and grow existing industries, and build positions in the high technology industries of tomorrow. Rising to the Challenge: U.S. Innovation Policy for Global Economy emphasizes the importance of sustaining global leadership in the commercialization of innovation which is vital to America's security, its role as a world power, and the welfare of its people. The second decade of the 21st century is witnessing the rise of a global competition that is based on innovative advantage. To this end, both advanced as well as emerging nations are developing and pursuing policies and programs that are in many cases less constrained by ideological limitations on the role of government and the concept of free market economics. The rapid transformation of the global innovation landscape presents tremendous challenges as well as important opportunities for the United States. This report argues that far more vigorous attention be paid to capturing the outputs of innovation - the commercial products, the industries, and particularly high-quality jobs to restore full employment. America's economic and national security future depends on our succeeding in this endeavor.
The Small Business Innovation Research (SBIR) program is one of the largest examples of U.S. public-private partnerships, and was established in 1982 to encourage small businesses to develop new processes and products and to provide quality research in support of the U.S. government's many missions. The U.S. Congress tasked the National Research Council with undertaking a comprehensive study of how the SBIR program has stimulated technological innovation and used small businesses to meet federal research and development needs, and with recommending further improvements to the program. In the first round of this study, an ad hoc committee prepared a series of reports from 2004 to 2009 on the SBIR program at the five agencies responsible for 96 percent of the program's operations-including the National Science Foundation (NSF). Building on the outcomes from the first round, this second round presents the committee's second review of the NSF SBIR program's operations. Public-private partnerships like SBIR are particularly important since today's knowledge economy is driven in large part by the nation's capacity to innovate. One of the defining features of the U.S. economy is a high level of entrepreneurial activity. Entrepreneurs in the United States see opportunities and are willing and able to assume risk to bring new welfare-enhancing, wealth-generating technologies to the market. Yet, although discoveries in areas such as genomics, bioinformatics, and nanotechnology present new opportunities, converting these discoveries into innovations for the market involves substantial challenges. The American capacity for innovation can be strengthened by addressing the challenges faced by entrepreneurs.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.