This study, commissioned by the National Aeronautics and Space Administration (NASA), examines the role of robotic exploration missions in assessing the risks to the first human missions to Mars. Only those hazards arising from exposure to environmental, chemical, and biological agents on the planet are assessed. To ensure that it was including all previously identified hazards in its study, the Committee on Precursor Measurements Necessary to Support Human Operations on the Surface of Mars referred to the most recent report from NASA's Mars Exploration Program/ Payload Analysis Group (MEPAG) (Greeley, 2001). The committee concluded that the requirements identified in the present NRC report are indeed the only ones essential for NASA to pursue in order to mitigate potential hazards to the first human missions to Mars.
This study, commissioned by the National Aeronautics and Space Administration (NASA), examines the role of robotic exploration missions in assessing the risks to the first human missions to Mars. Only those hazards arising from exposure to environmental, chemical, and biological agents on the planet are assessed. To ensure that it was including all previously identified hazards in its study, the Committee on Precursor Measurements Necessary to Support Human Operations on the Surface of Mars referred to the most recent report from NASA's Mars Exploration Program/ Payload Analysis Group (MEPAG) (Greeley, 2001). The committee concluded that the requirements identified in the present NRC report are indeed the only ones essential for NASA to pursue in order to mitigate potential hazards to the first human missions to Mars.
Recent spacecraft and robotic probes to Mars have yielded data that are changing our understanding significantly about the possibility of existing or past life on that planet. Coupled with advances in biology and life-detection techniques, these developments place increasing importance on the need to protect Mars from contamination by Earth-borne organisms. To help with this effort, NASA requested that the NRC examine existing planetary protection measures for Mars and recommend changes and further research to improve such measures. This report discusses policies, requirements, and techniques to protect Mars from organisms originating on Earth that could interfere with scientific investigations. It provides recommendations on cleanliness and biological burden levels of Mars-bound spacecraft, methods to reach those levels, and research to reduce uncertainties in preventing forward contamination of Mars.
Within the Office of Space Science of the National Aeronautics and Space Administration (NASA) special importance is attached to exploration of the planet Mars, because it is the most like Earth of the planets in the solar system and the place where the first detection of extraterrestrial life seems most likely to be made. The failures in 1999 of two NASA missions-Mars Climate Orbiter and Mars Polar Lander-caused the space agency's program of Mars exploration to be systematically rethought, both technologically and scientifically. A new Mars Exploration Program plan (summarized in Appendix A) was announced in October 2000. The Committee on Planetary and Lunar Exploration (COMPLEX), a standing committee of the Space Studies Board of the National Research Council, was asked to examine the scientific content of this new program. This goals of this report are the following: -Review the state of knowledge of the planet Mars, with special emphasis on findings of the most recent Mars missions and related research activities; -Review the most important Mars research opportunities in the immediate future; -Review scientific priorities for the exploration of Mars identified by COMPLEX (and other scientific advisory groups) and their motivation, and consider the degree to which recent discoveries suggest a reordering of priorities; and -Assess the congruence between NASA's evolving Mars Exploration Program plan and these recommended priorities, and suggest any adjustments that might be warranted.
This report addresses the transition of research satellites, instruments, and calculations into operational service for accurately observing and predicting the Earth's environment. These transitions, which take place in large part between NASA and NOAA, are important for maintaining the health, safety, and prosperity of the nation, and for achieving the vision of an Earth Information System in which quantitative information about the complete Earth system is readily available to myriad users. Many transitions have been ad hoc, sometimes taking several years or even decades to occur, and others have encountered roadblocksâ€"lack of long-range planning, resources, institutional or cultural differences, for instanceâ€"and never reached fruition. Satellite Observations of Earth's Environment recommends new structures and methods that will allow seamless transitions from research to practice.
For thirty years the NASA microgravity program has used space as a tool to study fundamental flow phenomena that are important to fields ranging from combustion science to biotechnology. This book assesses the past impact and current status of microgravity research programs in combustion, fluid dynamics, fundamental physics, and materials science and gives recommendations for promising topics of future research in each discipline. Guidance is given for setting priorities across disciplines by assessing each recommended topic in terms of the probability of its success and the magnitude of its potential impact on scientific knowledge and understanding; terrestrial applications and industry technology needs; and NASA technology needs. At NASA's request, the book also contains an examination of emerging research fields such as nanotechnology and biophysics, and makes recommendations regarding topics that might be suitable for integration into NASA's microgravity program.
Three recent developments have greatly increased interest in the search for life on Mars. The first is new information about the Martian environment including evidence of a watery past and the possibility of atmospheric methane. The second is the possibility of microbial viability on Mars. Finally, the Vision for Space Exploration initiative included an explicit directive to search for the evidence of life on Mars. These scientific and political developments led NASA to request the NRC's assistance in formulating an up-to-date integrated astrobiology strategy for Mars exploration. Among other topics, this report presents a review of current knowledge about possible life on Mars; an astrobiological assessment of current Mars missions; a review of Mars-mission planetary protection; and findings and recommendations. The report notes that the greatest increase in understanding of Mars will come from the collection and return to Earth of a well-chosen suite of Martian surface materials.
In February 2004, the President announced a new goal for NASA; to use humans and robots together to explore the Moon, Mars, and beyond. In response to this initiative, NASA has adopted new exploration goals that depend, in part, on solar physics research. These actions raised questions about how the research agenda recommended by the NRC in its 2002 report, The Sun to the Earth and Beyond, which did not reflect the new exploration goals, would be affected. As a result, NASA requested the NRC to review the role solar and space physics should play in support of the new goals. This report presents the results of that review. It considers solar and space physics both as aspects of scientific exploration and in support of enabling future exploration of the solar system. The report provides a series of recommendations about NASA's Sun-Earth Connections program to enable it to meet both of those goals.
In recent years, planetary science has seen a tremendous growth in new knowledge. Deposits of water ice exist at the Moon's poles. Discoveries on the surface of Mars point to an early warm wet climate, and perhaps conditions under which life could have emerged. Liquid methane rain falls on Saturn's moon Titan, creating rivers, lakes, and geologic landscapes with uncanny resemblances to Earth's. Vision and Voyages for Planetary Science in the Decade 2013-2022 surveys the current state of knowledge of the solar system and recommends a suite of planetary science flagship missions for the decade 2013-2022 that could provide a steady stream of important new discoveries about the solar system. Research priorities defined in the report were selected through a rigorous review that included input from five expert panels. NASA's highest priority large mission should be the Mars Astrobiology Explorer Cacher (MAX-C), a mission to Mars that could help determine whether the planet ever supported life and could also help answer questions about its geologic and climatic history. Other projects should include a mission to Jupiter's icy moon Europa and its subsurface ocean, and the Uranus Orbiter and Probe mission to investigate that planet's interior structure, atmosphere, and composition. For medium-size missions, Vision and Voyages for Planetary Science in the Decade 2013-2022 recommends that NASA select two new missions to be included in its New Frontiers program, which explores the solar system with frequent, mid-size spacecraft missions. If NASA cannot stay within budget for any of these proposed flagship projects, it should focus on smaller, less expensive missions first. Vision and Voyages for Planetary Science in the Decade 2013-2022 suggests that the National Science Foundation expand its funding for existing laboratories and establish new facilities as needed. It also recommends that the program enlist the participation of international partners. This report is a vital resource for government agencies supporting space science, the planetary science community, and the public.
The sun is the source of energy for life on earth and is the strongest modulator of the human physical environment. In fact, the Sun's influence extends throughout the solar system, both through photons, which provide heat, light, and ionization, and through the continuous outflow of a magnetized, supersonic ionized gas known as the solar wind. While the accomplishments of the past decade have answered important questions about the physics of the Sun, the interplanetary medium, and the space environments of Earth and other solar system bodies, they have also highlighted other questions, some of which are long-standing and fundamental. The Sun to the Earthâ€"and Beyond organizes these questions in terms of five challenges that are expected to be the focus of scientific investigations in solar and space physics during the coming decade and beyond.
Principal-investigator (PI) Earth science missions are small, focused science projects involving relatively small spacecraft. The selected PI is responsible for the scientific and programmatic success of the entire project. A particular objective of PI-led missions has been to help develop university-based research capacity. Such missions, however, pose significant challenges that are beyond the capabilities of most universities to manage. To help NASA's Office of Earth Science determine how best to address these, the NRC carried out an assessment of key issues relevant to the success of university-based PI-led Earth observation missions. This report presents the result of that study. In particular, the report provides an analysis of opportunities to enhance such missions and recommendations about whether and, if so, how they should be used to build university-based research capabilities.
This report is the summary of a workshop held in May 2003 by the Space Studies Board's Committee on Solar and Space Physics to synthesize understanding of the physics of the outer heliosphere and the critical role played by the local interstellar medium (LISM) and to identify directions for the further exploration of this challenging environment.
Solar and space physics is the study of solar system phenomena that occur in the plasma state. Examples include sunspots, the solar wind, planetary magnetospheres, radiation belts, and the aurora. While each is a distinct phenomenon, there are commonalities among them. To help define and systematize these universal aspects of the field of space physics, the National Research Council was asked by NASA's Office of Space Science to provide a scientific assessment and strategy for the study of magnetized plasmas in the solar system. This report presents that assessment. It covers a number of important research goals for solar and space physics. The report is complementary to the NRC report, The Sun to the Earthâ€"and Beyond: A Decadal Research Strategy for Solar and Space Physics, which presents priorities and strategies for future program activities.
As part of the Vision for Space Exploration (VSE), NASA is planning for humans to revisit the Moon and someday go to Mars. An important consideration in this effort is protection against the exposure to space radiation. That radiation might result in severe long-term health consequences for astronauts on such missions if they are not adequately shielded. To help with these concerns, NASA asked the NRC to further the understanding of the risks of space radiation, to evaluate radiation shielding requirements, and recommend a strategic plan for developing appropriate mitigation capabilities. This book presents an assessment of current knowledge of the radiation environment; an examination of the effects of radiation on biological systems and mission equipment; an analysis of current plans for radiation protection; and a strategy for mitigating the risks to VSE astronauts.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.