The ability of U.S. military forces to field new weapons systems quickly and to contain their cost growth has declined significantly over the past few decades. There are many causes including increased complexity, funding instability, bureaucracy, and more diverse user demands, but a view that is gaining more acceptance is that better systems engineering (SE) could help shorten development time. To investigate this assertion in more detail, the US Air Force asked the NRC to examine the role that SE can play during the acquisition life cycle to address root causes of program failure especially during pre-milestone A and early program phases. This book presents an assessment of the relationship between SE and program outcome; an examination of the SE workforce; and an analysis of SE functions and guidelines. The latter includes a definition of the minimum set of SE processes that need to be accounted for during project development.
The ability of U.S. military forces to field new weapons systems quickly and to contain their cost growth has declined significantly over the past few decades. There are many causes including increased complexity, funding instability, bureaucracy, and more diverse user demands, but a view that is gaining more acceptance is that better systems engineering (SE) could help shorten development time. To investigate this assertion in more detail, the US Air Force asked the NRC to examine the role that SE can play during the acquisition life cycle to address root causes of program failure especially during pre-milestone A and early program phases. This book presents an assessment of the relationship between SE and program outcome; an examination of the SE workforce; and an analysis of SE functions and guidelines. The latter includes a definition of the minimum set of SE processes that need to be accounted for during project development.
From the days of biplanes and open cockpits, the air forces of the United States have relied on the mastery of technology. From design to operation, a project can stretch to 20 years and more, with continuous increases in cost. Much of the delay and cost growth afflicting modern United States Air Force (USAF) programs is rooted in the incorporation of advanced technology into major systems acquisition. Leaders in the Air Force responsible for science and technology and acquisition are trying to determine the optimal way to utilize existing policies, processes, and resources to properly document and execute pre-program of record technology development efforts, including opportunities to facilitate the rapid acquisition of revolutionary capabilities and the more deliberate acquisition of evolutionary capabilities. Evaluation of U.S. Air Force Preacquisition Technology Development responds to this need with an examination of the current state of Air Force technology development and the environment in which technology is acquired. The book considers best practices from both government and industry to distill appropriate recommendations that can be implemented within the USAF.
Lightweighting is a concept well known to structural designers and engineers in all applications areas, from laptops to bicycles to automobiles to buildings and airplanes. Reducing the weight of structures can provide many advantages, including increased energy efficiency, better design, improved usability, and better coupling with new, multifunctional features. While lightweighting is a challenge in commercial structures, the special demands of military vehicles for survivability, maneuverability and transportability significantly stress the already complex process. Application of Lightweighting Technology to Military Vehicles, Vessels, and Aircraft assesses the current state of lightweighting implementation in land, sea, and air vehicles and recommends ways to improve the use of lightweight materials and solutions. This book considers both lightweight materials and lightweight design; the availability of lightweight materials from domestic manufacturers; and the performance of lightweight materials and their manufacturing technologies. It also considers the "trade space"-that is, the effect that use of lightweight materials or technologies can have on the performance and function of all vehicle systems and components. This book also discusses manufacturing capabilities and affordable manufacturing technology to facilitate lightweighting. Application of Lightweighting Technology to Military Vehicles, Vessels, and Aircraft will be of interest to the military, manufacturers and designers of military equipment, and decision makers.
From the days of biplanes and open cockpits, the air forces of the United States have relied on the mastery of technology. From design to operation, a project can stretch to 20 years and more, with continuous increases in cost. Much of the delay and cost growth afflicting modern United States Air Force (USAF) programs is rooted in the incorporation of advanced technology into major systems acquisition. Leaders in the Air Force responsible for science and technology and acquisition are trying to determine the optimal way to utilize existing policies, processes, and resources to properly document and execute pre-program of record technology development efforts, including opportunities to facilitate the rapid acquisition of revolutionary capabilities and the more deliberate acquisition of evolutionary capabilities. Evaluation of U.S. Air Force Preacquisition Technology Development responds to this need with an examination of the current state of Air Force technology development and the environment in which technology is acquired. The book considers best practices from both government and industry to distill appropriate recommendations that can be implemented within the USAF.
While there are examples of successful weapon systems acquisition programs within the U.S. Air Force (USAF), many of the programs are still incurring cost growth, schedule delays, and performance problems. The USAF now faces serious challenges in acquiring and maintaining its weapons systems as it strives to maintain its current programs; add new capabilities to counter evolving threats; and reduce its overall program expenditures. Owning the technical baseline is a critical component of the Air Force's ability to regain and maintain acquisition excellence. Owning the technical baseline allows the government acquisition team to manage and respond knowledgeably and effectively to systems development, operations, and execution, thereby avoiding technical and other programmatic barriers to mission success. Additionally, owning the technical baseline ensures that government personnel understand the user requirements, why a particular design and its various features have been selected over competing designs, and what the options are to pursue alternative paths to the final product given unanticipated cost, schedule, and performance challenges. Owning the Technical Baseline for Acquisition Programs in the U.S. Air Force discusses the strategic value to the Air Force of owning the technical baseline and the risk of not owning it and highlights key aspects of how agencies other than the Air Force own the technical baseline for their acquisition programs. This report identifies specific barriers to owning the technical baseline for the Air Force and makes recommendations to help guide the Air Force in overcoming those barriers.
The Department of Defense (DOD) spends over $300 billion each year to develop, produce, field and sustain weapons systems (the U.S. Air Force over $100 billion per year). DOD and Air Force acquisitions programs often experience large cost overruns and schedule delays leading to a loss in confidence in the defense acquisition system and the people who work in it. Part of the DOD and Air Force response to these problems has been to increase the number of program and technical reviews that acquisition programs must undergo. This book looks specifically at the reviews that U.S. Air Force acquisition programs are required to undergo and poses a key question: Can changes in the number, content, or sequence of reviews help Air Force program managers more successfully execute their programs? This book concludes that, unless they do it better than they are now, Air Force and DOD attempts to address poor acquisition program performance with additional reviews will fail. This book makes five recommendations that together form a gold standard for conduct of reviews and if implemented and rigorously managed by Air Force and DOD acquisition executives can increase review effectiveness and efficiency. The bottom line is to help program managers successfully execute their programs.
The Department of Defense (DOD) spends over $300 billion each year to develop, produce, field and sustain weapons systems (the U.S. Air Force over $100 billion per year). DOD and Air Force acquisitions programs often experience large cost overruns and schedule delays leading to a loss in confidence in the defense acquisition system and the people who work in it. Part of the DOD and Air Force response to these problems has been to increase the number of program and technical reviews that acquisition programs must undergo. This book looks specifically at the reviews that U.S. Air Force acquisition programs are required to undergo and poses a key question: Can changes in the number, content, or sequence of reviews help Air Force program managers more successfully execute their programs? This book concludes that, unless they do it better than they are now, Air Force and DOD attempts to address poor acquisition program performance with additional reviews will fail. This book makes five recommendations that together form a gold standard for conduct of reviews and if implemented and rigorously managed by Air Force and DOD acquisition executives can increase review effectiveness and efficiency. The bottom line is to help program managers successfully execute their programs.
In 2012, the National Defense Authorization Act (NDAA), section 818, outlined new requirements for industry to serve as the lead in averting counterfeits in the defense supply chain. Subsequently, the House Armed Services Committee, in its report on the Fiscal Year 2016 NDAA, noted that the pending sale of IBM's microprocessor fabrication facilities to Global Foundries created uncertainty about future access of the United States to trusted state-of-the-art microelectronic components and directed the Comptroller General to assess the Department of Defense's (DoD's) actions and measures to address this threat. In this context, the National Academies of Sciences, Engineering, and Medicine convened a workshop to facilitate an open dialogue with leading industry, academic, and government experts to (1) define the current technological and policy challenges with maintaining a reliable and secure source of microelectronic components; (2) review the current state of acquisition processes within the Air Force for acquiring reliable and secure microelectronic components; and (3) explore options for possible business models within the national security complex that would be relevant for the Air Force acquisition community. This publication summarizes the results of the workshop.
The Air Force requires technical skills and expertise across the entire range of activities and processes associated with the development, fielding, and employment of air, space, and cyber operational capabilities. The growing complexity of both traditional and emerging missions is placing new demands on education, training, career development, system acquisition, platform sustainment, and development of operational systems. While in the past the Air Force's technologically intensive mission has been highly attractive to individuals educated in science, technology, engineering, and mathematics (STEM) disciplines, force reductions, ongoing military operations, and budget pressures are creating new challenges for attracting and managing personnel with the needed technical skills. Assessments of recent development and acquisition process failures have identified a loss of technical competence within the Air Force (that is, in house or organic competence, as opposed to contractor support) as an underlying problem. These challenges come at a time of increased competition for technical graduates who are U.S. citizens, an aging industry and government workforce, and consolidations of the industrial base that supports military systems. In response to a request from the Deputy Assistant Secretary of the Air Force for Science, Technology, and Engineering, the National Research Council conducted five fact-finding meetings at which senior Air Force commanders in the science and engineering, acquisition, test, operations, and logistics domains provided assessments of the adequacy of the current workforce in terms of quality and quantity.
Under mandate of Section 253, Study and Report on Effectiveness of Air Force Science and Technology Program Changes, of the Fiscal Year 2002 National Defense Authorization Act, the U.S. Air Force contracted with the National Research Council (NRC) to conduct the present study. In response, the NRC established the Committee on Review of the Effectiveness of Air Force Science and Technology Program Changes-composed of academics, active and retired industry executives, former Air Force and Department of Defense (DoD) civilian executives, and retired general officers with acquisition and science and technology (S&T) backgrounds. The committee was to review the effectiveness of the Air Force S&T program and, in particular, the actions that the Air Force has taken to improve the management of the program in recent years in response to concerns voiced in numerous study reports and by Congress. The committee's principal charter was to assess whether, as a whole, the changes put in place by the Air Force since 1999 are sufficient to assure that adequate technology will be available to ensure U.S. military superiority. The committee conducted four open meetings to collect information from the Air Force and its Scientific Advisory Board (SAB), the U.S Navy, the U.S. Army, and DoD. A great many factors influence any judgment of the S&T program's sufficiency in supporting future warfighter needs; these factors include threat assessment, budget constraints, technology opportunities, workforce, and program content. Given the relatively short time available for this study and considering the detailed reviews conducted annually by the SAB, the technical content of the S&T program was necessarily beyond the committee's purview. Rather, the committee focused on S&T management, including areas that have been studied many times, in depth, by previous advisory groups. Besides addressing technical content, those prior studies and congressional concerns highlighted four overarching S&T issues: advocacy and visibility, planning, workforce, and investment levels. In response, the Air Force instituted changes in S&T management. The NRC is requested to conduct a study to determine how changes to the Air Force science and technology program implemented during the past two years affect the future capabilities of the Air Force. Effectiveness of Air Force Science and Technology Program Changes reviews and assess whether such changes as a whole are sufficient to ensure the following: A. That concerns about the management of the science and technology program that have been raised by the Congress, the Defense Science Board, the Air Force Scientific Advisory Board, and the Air Force Association have been adequately addressed. B. That appropriate and sufficient technology is available to ensure the military superiority of the United States and counter future high-risk threats. C. That the science and technology investments are balanced to meet near-, mid-, and long-term needs of the Air Force. D. That the Air Force organizational structure provides for a sufficiently senior level advocate of science and technology to ensure an ongoing, effective presence of the science and technology community during the budget and planning process. This report also assess the specific changes to the Air Force science and technology program as whether the biannual science and technology summits provide sufficient visibility into, and understanding and appreciation of, the value of the science and technology program to the senior level of Air Force budget and policy decision makers.
The ability of the United States Air Force (USAF) to keep its aircraft operating at an acceptable operational tempo, in wartime and in peacetime, has been important to the Air Force since its inception. This is a much larger issue for the Air Force today, having effectively been at war for 20 years, with its aircraft becoming increasingly more expensive to operate and maintain and with military budgets certain to further decrease. The enormously complex Air Force weapon system sustainment enterprise is currently constrained on many sides by laws, policies, regulations and procedures, relationships, and organizational issues emanating from Congress, the Department of Defense (DoD), and the Air Force itself. Against the back-drop of these stark realities, the Air Force requested the National Research Council (NRC) of the National Academies, under the auspices of the Air Force Studies Board to conduct and in-depth assessment of current and future Air Force weapon system sustainment initiatives and recommended future courses of action for consideration by the Air Force. Examination of the U.S. Air Force's Aircraft Sustainment Needs in the Future and Its Strategy to Meet Those Needs addresses the following topics: Assess current sustainment investments, infrastructure, and processes for adequacy in sustaining aging legacy systems and their support equipment. Determine if any modifications in policy are required and, if so, identify them and make recommendations for changes in Air Force regulations, policies, and strategies to accomplish the sustainment goals of the Air Force. Determine if any modifications in technology efforts are required and, if so, identify them and make recommendations regarding the technology efforts that should be pursued because they could make positive impacts on the sustainment of the current and future systems and equipment of the Air Force. Determine if the Air Logistics Centers have the necessary resources (funding, manpower, skill sets, and technologies) and are equipped and organized to sustain legacy systems and equipment and the Air Force of tomorrow. Identify and make recommendations regarding incorporating sustainability into future aircraft designs.
Modern software engineering practices, pioneered by the commercial software community, have begun transforming Department of Defense (DoD) software development, integration processes, and deployment cycles. DoD must further adopt and adapt these practices across the full defense software life cycle - and this adoption has implications for software maintenance and software sustainment across the U.S. defense community. Air Force Software Sustainment and Maintenance of Weapons Systems evaluates the current state of software sustainment within the U.S. Air Force and recommends changes to the software sustainment enterprise. This report assesses how software that is embedded within weapon platforms is currently sustained within the U.S. Air Force; identifies the unique requirements of software sustainment; develops and recommends a software sustainment work breakdown structure; and identifies the necessary personnel skill sets and core competencies for software sustainment.
The development and application of technology has been an essential part of U.S. airpower, leading to a century of air supremacy. But that developmental path has rarely been straight, and it has never been smooth. Only the extraordinary efforts of exceptional leadership - in the Air Forces and the wider Department of Defense, in science and in industry - have made the triumphs of military airpower possible. Development Planning provides recommendations to improve development planning for near-term acquisition projects, concepts not quite ready for acquisition, corporate strategic plans, and training of acquisition personnel. This report reviews past uses of development planning by the Air Force, and offers an organizational construct that will help the Air Force across its core functions. Developmental planning, used properly by experienced practitioners, can provide the Air Force leadership with a tool to answer the critical question, Over the next 20 years in 5-year increments, what capability gaps will the Air Force have that must be filled? Development planning will also provide for development of the workforce skills needed to think strategically and to defectively define and close the capability gap. This report describes what development planning could be and should be for the Air Force.
Since the mid-1940s, when Vannevar Bush and Theodore von Karman wrote Science, the Endless Frontier and Toward New Horizons, respectively, there has been a consensus that strong Department of Defense support of science and technology (S&T) is important to the security of the United States. During the Cold War, as it faced technologically capable adversaries whose forces potentially outnumbered U.S. forces, the United States relied on a strong defense S&T program to support the development of technologically superior weapons and systems that would enable it to prevail in the event of conflict. Since the end of the Cold War, the United States has relied on its technological superiority to maintain a military advantage while at the same time reducing the size of its forces. Over the past half-century, creating and maintaining a technologically superior military capability have become fundamental to U.S. national security strategy, and investment in S&T has become a basic component of the defense budget. In late 1998, Congress asked the Secretary of Defense to conduct a study, in cooperation with the National Research Council (NRC), on the S&T base of the U.S. Department of Defense (DoD). Congress was particularly concerned about areas of the S&T program related to air systems, space systems, and supporting information systems. Its concern was based on the Air Force's reduction of its S&T program from the largest of the three military service programs to the smallest. Congress also wanted to ensure that the Air Force maintained an appropriately sized S&T workforce. In late 1999, the Deputy Under Secretary of Defense for Science and Technology asked the NRC to conduct a study to explore these issues.
The Department of Defense (DoD) recently adopted evolutionary acquisition, a dynamic strategy for the development and acquisition of its defense systems. Evolutionary defense systems are planned, in advance, to be developed through several stages in a single procurement program. Each stage is planned to produce a viable system which could be fielded. The system requirements for each stage of development may be specified in advance of a given stage or may be decided at the outset of that stage's development. Due to the different stages that comprise an evolutionary system, there exists a need for careful reexamination of current testing and evaluation policies and processes, which were designed for single-stage developments. The Office of the Under Secretary of Defense for Acquisition, Technology and Logistics (USD-AT&L) and the Director of Operational Testing and Evaluation (DOT&E) asked the Committee on National Statistics (CNSTAT) of the National Academies to examine the key issues and implications for defense testing from the introduction of evolutionary acquisition. The CNSTAT was charged with planning and conducting a workshop to study test strategies for the evolutionary acquisition. The committee reviewed defense materials defining evolutionary acquisition and interviewed test officials from the three major test service agencies to understand the current approaches used in testing systems procured through evolutionary acquisition. The committee also examined possible alternatives to identify problems in implementation. At the workshop that took place on December 13-14, 2004, the committee tried to answer many questions including: What are the appropriate roles and objectives for testing in an evolutionary environment?, Can a systematic, disciplined process be developed for testing and evaluation in such a fluid and flexible environment?, and Is there adequate technical expertise within the acquisition community to fully exploit data gathered from previous stages to effectively combine information from various sources for test design and analysis?. Testing of Defense Systems in an Evolutionary Acquisition Environment provides the conclusions and recommendations of the CNSTAT following the workshop and its other investigations.
A key technical issue for future Air Force systems is to improve their ability to survive. Increased use of stealth technology is proposed by many to be the major element in efforts to enhance survivability for future systems. Others, however, suggest that the high cost and maintenance required of stealth technology make increased speed potentially more productive. To help address this issue, the Air Force asked the NRC to investigate combinations of speed and stealth that would provide U.S. aircraft with a high survival capability in the 2018 period, and to identify changes in R&D plans to enable such aircraft. This report presents a review of stealth technology development; a discussion of possible future missions and threats; an analysis of the technical feasibility for achieving various levels of stealth and different speeds by 2018 and of relevant near-term R&D needs and priorities; and observations about the utility of speed and stealth trade-offs against evolving threats.
Since the mid-1940s, when Vannevar Bush and Theodore von Karman wrote Science, the Endless Frontier and Toward New Horizons, respectively, there has been a consensus that strong Department of Defense support of science and technology (S&T) is important to the security of the United States. During the Cold War, as it faced technologically capable adversaries whose forces potentially outnumbered U.S. forces, the United States relied on a strong defense S&T program to support the development of technologically superior weapons and systems that would enable it to prevail in the event of conflict. Since the end of the Cold War, the United States has relied on its technological superiority to maintain a military advantage while at the same time reducing the size of its forces. Over the past half-century, creating and maintaining a technologically superior military capability have become fundamental to U.S. national security strategy, and investment in S&T has become a basic component of the defense budget. In late 1998, Congress asked the Secretary of Defense to conduct a study, in cooperation with the National Research Council (NRC), on the S&T base of the U.S. Department of Defense (DoD). Congress was particularly concerned about areas of the S&T program related to air systems, space systems, and supporting information systems. Its concern was based on the Air Force's reduction of its S&T program from the largest of the three military service programs to the smallest. Congress also wanted to ensure that the Air Force maintained an appropriately sized S&T workforce. In late 1999, the Deputy Under Secretary of Defense for Science and Technology asked the NRC to conduct a study to explore these issues.
Overall Air Force weapon system sustainment (WSS) costs are growing at more than 4 percent per year, while budgets have remained essentially flat. The cost growth is due partly to aging of the aircraft fleet, and partly to the cost of supporting higher-performance aircraft and new capabilities provided by more complex and sophisticated systems, such as the latest intelligence, surveillance, and reconnaissance (ISR) platforms. Furthermore, the expectation for the foreseeable future is that sustainment budgets are likely to decrease, so that the gap between budgets and sustainment needs will likely continue to grow wider. Most observers accept that the Air Force will have to adopt new approaches to WSS if it is going to address this problem and remain capable of carrying out its missions. In this context, the original intent of this 3-day workshop was to focus on ways that science and technology (S&T) could help the Air Force reduce sustainment costs. However, as the workshop evolved, the discussions focused more and more on Air Force leadership, management authority, and culture as the more critical factors that need to change in order to solve sustainment problems. Many participants felt that while S&T investments could certainly help-particularly if applied in the early stages ("to the left") of the product life cycle-adopting a transformational management approach that defines the user-driven goals of the enterprise, empowers people to achieve them, and holds them accountable, down to the shop level. Several workshop participants urged Air Force leaders to start the process now, even though it will take years to percolate down through the entire organization. These sustainment concerns are not new and have been studied extensively, including recent reports from the National Research Council's Air Force Studies Board and the Air Force Scientific Advisory Board.
In the military, information technology (IT) has enabled profound advances in weapons systems and the management and operation of the defense enterprise. A significant portion of the Department of Defense (DOD) budget is spent on capabilities acquired as commercial IT commodities, developmental IT systems that support a broad range of warfighting and functional applications, and IT components embedded in weapons systems. The ability of the DOD and its industrial partners to harness and apply IT for warfighting, command and control and communications, logistics, and transportation has contributed enormously to fielding the world's best defense force. However, despite the DOD's decades of success in leveraging IT across the defense enterprise, the acquisition of IT systems continues to be burdened with serious problems. To address these issues, the National Research Council assembled a group of IT systems acquisition and T&E experts, commercial software developers, software engineers, computer scientists and other academic researchers. The group evaluated applicable legislative requirements, examined the processes and capabilities of the commercial IT sector, analyzed DOD's concepts for systems engineering and testing in virtual environments, and examined the DOD acquisition environment. The present volume summarizes this analysis and also includes recommendations on how to improve the acquisition, systems engineering, and T&E processes to achieve the DOD's network-centric goals.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.