Today's military missions have shifted away from fighting nation states using conventional weapons toward combating insurgents and terrorist networks in a battlespace in which the attitudes and behaviors of civilian noncombatants may be the primary effects of military actions. To support these new missions, the military services are increasingly interested in using models of the behavior of humans, as individuals and in groups of various kinds and sizes. Behavioral Modeling and Simulation reviews relevant individual, organizational, and societal (IOS) modeling research programs, evaluates the strengths and weaknesses of the programs and their methodologies, determines which have the greatest potential for military use, and provides guidance for the design of a research program to effectively foster the development of IOS models useful to the military. This book will be of interest to model developers, operational military users of the models and their managers, and government personnel making funding decisions regarding model development.
The technical and cultural boundaries between modeling, simulation, and games are increasingly blurring, providing broader access to capabilities in modeling and simulation and further credibility to game-based applications. The purpose of this study is to provide a technical assessment of Modeling, Simulation, and Games (MS&G) research and development worldwide and to identify future applications of this technology and its potential impacts on government and society. Further, this study identifies feasible applications of gaming and simulation for military systems; associated vulnerabilities of, risks to, and impacts on critical defense capabilities; and other significant indicators and warnings that can help prevent or mitigate surprises related to technology applications by those with hostile intent. Finally, this book recommends priorities for future action by appropriate departments of the intelligence community, the Department of Defense research community, and other government entities. The Rise of Games and High Performance Computing for Modeling and Simulation will serve as a useful tutorial and reference document for this particular era in the evolution of MS&G. The book also highlights a number of rising capabilities facilitated by MS&G to watch for in the coming years.
The primary function of the intelligence analyst is to make sense of information about the world, but the way analysts do that work will look profoundly different a decade from now. Technological changes will bring both new advances in conducting analysis and new risks related to technologically based activities and communications around the world. Because these changes are virtually inevitable, the Intelligence Community will need to make sustained collaboration with researchers in the social and behavioral sciences (SBS) a key priority if it is to adapt to these changes in the most productive ways. A Decadal Survey Of The Social and Behavioral Sciences provides guidance for a 10-year research agenda. This report identifies key opportunities in SBS research for strengthening intelligence analysis and offers ideas for integrating the knowledge and perspectives of researchers from these fields into the planning and design of efforts to support intelligence analysis.
In April 1991 BusinessWeek ran a cover story entitled, "I Can't Work This ?#!!@ Thing," about the difficulties many people have with consumer products, such as cell phones and VCRs. More than 15 years later, the situation is much the same-but at a very different level of scale. The disconnect between people and technology has had society-wide consequences in the large-scale system accidents from major human error, such as those at Three Mile Island and in Chernobyl. To prevent both the individually annoying and nationally significant consequences, human capabilities and needs must be considered early and throughout system design and development. One challenge for such consideration has been providing the background and data needed for the seamless integration of humans into the design process from various perspectives: human factors engineering, manpower, personnel, training, safety and health, and, in the military, habitability and survivability. This collection of development activities has come to be called human-system integration (HSI). Human-System Integration in the System Development Process reviews in detail more than 20 categories of HSI methods to provide invaluable guidance and information for system designers and developers.
TRB Special Report 306: Naval Engineering in the 21st Century: The Science and Technology Foundation for Future Naval Fleets examines the state of basic and applied research in the scientific fields that support naval engineering and explores whether Office of Naval Research (ONR) activities, under its National Naval Responsibility for Naval Engineering (NNR-NE) initiative, have been effective in sustaining these fields.
For the past decade, the U.S. Marine Corps and its sister services have been engaged in what has been termed "hybrid warfare," which ranges from active combat to civilian support. Hybrid warfare typically occurs in environments where all modes of war are employed, such as conventional weapons, irregular tactics, terrorism, disruptive technologies, and criminality to destabilize an existing order. In August 2010, the National Research Council established the Committee on Improving the Decision Making Abilities of Small Unit Leaders to produce Improving the Decision Making Abilities of Small Unit Leaders. This report examines the operational environment, existing abilities, and gap to include data, technology, skill sets, training, and measures of effectiveness for small unit leaders in conducting enhanced company operations (ECOs) in hybrid engagement, complex environments. Improving the Decision Making Abilities of Small Unit Leaders also determines how to understand the decision making calculus and indicators of adversaries. Improving the Decision Making Abilities of Small Unit Leaders recommends operational and technical approaches for improving the decision making abilities of small unit leaders, including any acquisition and experimentation efforts that can be undertaken by the Marine Corps and/or by other stakeholders aimed specifically at improving the decision making of small unit leaders. This report recommends ways to ease the burden on small unit leaders and to better prepare the small unit leader for success. Improving the Decision Making Abilities of Small Unit Leaders also indentifies a responsible organization to ensure that training and education programs are properly developed, staffed, operated, evaluated, and expanded.
Social science research conducted since the late 1970's has contributed greatly to society's ability to mitigate and adapt to natural, technological, and willful disasters. However, as evidenced by Hurricane Katrina, the Indian Ocean tsunami, the September 11, 2001 terrorist attacks on the United States, and other recent events, hazards and disaster research and its application could be improved greatly. In particular, more studies should be pursued that compare how the characteristics of different types of events-including predictability, forewarning, magnitude, and duration of impact-affect societal vulnerability and response. This book includes more than thirty recommendations for the hazards and disaster community.
This report summarizes the results of the work of the Panel on Support Organizations for the Engineering Community, which was one of the subcommittees of the National Research Council's Committee on the Education and Utilization of the Engineer. The panel found that many engineering support needs were common to all of the sectors investigated and, in a number of instances, the support mechanisms themselves were also common. The sectors studied included academia, government, industry, private practice, and the society at large. Some of the common needs and concerns addressed by this document are: (1) technical competence; (2) information exchange; (3) professional development; and (4) professional standards. The appendices include a discussion of public information and media outreach activities, and a survey of journalists' perceptions of engineers, physicians, and scientists. (TW)
This book reviews the uses and abuses of microsimulation modelsâ€"large, complex models that produce estimates of the effects on program costs and who would gain and who would lose from proposed changes in government policies ranging from health care to welfare to taxes. Volume 1 is designed to guide future investment in modeling and analysis capability on the part of government agencies that produce policy estimates. It will inform congressional and executive decision makers about the strengths and weaknesses of models and estimates and will interest social scientists in the potential of microsimulation techniques for basic and applied research as well as policy uses. The book concludes that a "second revolution" is needed to improve the quality of microsimulation and other policy analysis models and the estimates they produce, with a special emphasis on systematic validation of models and communication of validation results to decision makers.
As climate change has pushed climate patterns outside of historic norms, the need for detailed projections is growing across all sectors, including agriculture, insurance, and emergency preparedness planning. A National Strategy for Advancing Climate Modeling emphasizes the needs for climate models to evolve substantially in order to deliver climate projections at the scale and level of detail desired by decision makers, this report finds. Despite much recent progress in developing reliable climate models, there are still efficiencies to be gained across the large and diverse U.S. climate modeling community. Evolving to a more unified climate modeling enterprise-in particular by developing a common software infrastructure shared by all climate researchers and holding an annual climate modeling forum-could help speed progress. Throughout this report, several recommendations and guidelines are outlined to accelerate progress in climate modeling. The U.S. supports several climate models, each conceptually similar but with components assembled with slightly different software and data output standards. If all U.S. climate models employed a single software system, it could simplify testing and migration to new computing hardware, and allow scientists to compare and interchange climate model components, such as land surface or ocean models. A National Strategy for Advancing Climate Modeling recommends an annual U.S. climate modeling forum be held to help bring the nation's diverse modeling communities together with the users of climate data. This would provide climate model data users with an opportunity to learn more about the strengths and limitations of models and provide input to modelers on their needs and provide a venue for discussions of priorities for the national modeling enterprise, and bring disparate climate science communities together to design common modeling experiments. In addition, A National Strategy for Advancing Climate Modeling explains that U.S. climate modelers will need to address an expanding breadth of scientific problems while striving to make predictions and projections more accurate. Progress toward this goal can be made through a combination of increasing model resolution, advances in observations, improved model physics, and more complete representations of the Earth system. To address the computing needs of the climate modeling community, the report suggests a two-pronged approach that involves the continued use and upgrading of existing climate-dedicated computing resources at modeling centers, together with research on how to effectively exploit the more complex computer hardware systems expected over the next 10 to 20 years.
Natural disasters-including hurricanes, earthquakes, volcanic eruptions, and floods-caused more than 220,000 deaths worldwide in the first half of 2010 and wreaked havoc on homes, buildings, and the environment. To withstand and recover from natural and human-caused disasters, it is essential that citizens and communities work together to anticipate threats, limit their effects, and rapidly restore functionality after a crisis. Increasing evidence indicates that collaboration between the private and public sectors could improve the ability of a community to prepare for, respond to, and recover from disasters. Several previous National Research Council reports have identified specific examples of the private and public sectors working cooperatively to reduce the effects of a disaster by implementing building codes, retrofitting buildings, improving community education, or issuing extreme-weather warnings. State and federal governments have acknowledged the importance of collaboration between private and public organizations to develop planning for disaster preparedness and response. Despite growing ad hoc experience across the country, there is currently no comprehensive framework to guide private-public collaboration focused on disaster preparedness, response, and recovery. Building Community Disaster Resilience through Private-Public Collaboration assesses the current state of private-public sector collaboration dedicated to strengthening community resilience, identifies gaps in knowledge and practice, and recommends research that could be targeted for investment. Specifically, the book finds that local-level private-public collaboration is essential to the development of community resilience. Sustainable and effective resilience-focused private-public collaboration is dependent on several basic principles that increase communication among all sectors of the community, incorporate flexibility into collaborative networks, and encourage regular reassessment of collaborative missions, goals, and practices.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.