Naval Analytical Capabilities assesses current Department of Defense initiatives and the Department of the Navy's progress in transitioning from a requirements-based to a capabilities-based organization. The report also provides recommendations aimed at improving the organizational structure of the Office of the Chief of Naval Operations to best position the Chief of Naval Operations to fulfill his Title 10 (U.S. Code on Armed Forces) responsibilities. This report addresses key elements of capabilities-based planning, examines Navy analytical processes, and recommends an approach to making improvements.
Naval Analytical Capabilities assesses current Department of Defense initiatives and the Department of the Navy's progress in transitioning from a requirements-based to a capabilities-based organization. The report also provides recommendations aimed at improving the organizational structure of the Office of the Chief of Naval Operations to best position the Chief of Naval Operations to fulfill his Title 10 (U.S. Code on Armed Forces) responsibilities. This report addresses key elements of capabilities-based planning, examines Navy analytical processes, and recommends an approach to making improvements.
The Navy has put forth a new construct for its strike forces that enables more effective forward deterrence and rapid response. A key aspect of this construct is the need for flexible, adaptive command, control, communications, computers, intelligence, surveillance, and reconnaissance (C4ISR) systems. To assist development of this capability, the Navy asked the NRC to examine C4ISR for carrier, expeditionary, and strike and missile defense strike groups, and for expeditionary strike forces. This report provides an assessment of C4ISR capabilities for each type of strike group; recommendations for C4ISR architecture for use in major combat operations; promising technology trends; and an examination of organizational improvements that can enable the recommended architecture.
The Department of Defense is in the process of transforming the nation's armed forces to meet the military challenges of the 21st century. Currently, the opportunity exists to carry out experiments at individual and joint service levels to facilitate this transformation. Experimentation, which involves a spectrum of activities including analyses, war games, modeling and simulation, small focused experiments, and large field events among other things, provides the means to enhance naval and joint force development. To assist the Navy in this effort, the Chief of Naval Operations (CNO) asked the National Research Council (NRC) to conduct a study to examine the role of experimentation in building future naval forces to operate in the joint environment. The NRC formed the Committee for the Role of Experimentation in Building Future Naval Forces to perform the study.
Network-Centric Naval Forces: A Transition Strategy for Enhancing Operational Capabilities is a study to advise the Department of the Navy regarding its transition strategy to achieve a network-centric naval force through technology application. This report discusses the technical underpinnings needed for a transition to networkcentric forces and capabilities.
A letter dated December 21, 2011, to National Academy of Sciences President Dr. Ralph Cicerone from the Chief of Naval Operations, ADM Jonathan W. Greenert, U.S. Navy, requested that the National Research Council's (NRC's) Naval Studies Board (NSB) conduct a study to examine the issues surrounding capability surpriseboth operationally and technically relatedfacing the U.S. naval services. Accordingly, in February 2012, the NRC, under the auspices of its NSB, established the Committee on Capability Surprise for U.S. Naval Forces. The study's terms of reference, provided in Enclosure A of this interim report, were formulated by the Office of the Chief of Naval Operations (CNO) in consultation with the NSB chair and director. The terms of reference charge the committee to produce two reports over a 15-month period. The present report is the first of these, an interim report issued, as requested, following the third full committee meeting. The terms of reference direct that the committee in its two reports do the following: (1) Select a few potential capability surprises across the continuum from disruptive technologies, to intelligence inferred capability developments, through operational deployments and assess what U.S. Naval Forces are doing (and could do) about these surprises while mindful of future budgetary declines; (2) Review and assess the adequacy of current U.S. Naval Forces' policies, strategies, and operational and technical approaches for addressing these and other surprises; and (3) Recommend any changes, including budgetary and organizational changes, as well as identify any barriers and/or leadership issues that must be addressed for responding to or anticipating such surprises including developing some of our own surprises to mitigate against unanticipated surprises. Capability Surprise for U.S. Naval Forces: Initial Observations and Insights: Interim Report highlights issues brought to the committee's attention during its first three meetings and provides initial observations and insights in response to each of the three tasks above. It is very much an interim report that neither addresses in its entirety any one element of the terms of reference nor reaches final conclusions on any aspect of capability surprise for naval forces. The committee will continue its study during the coming months and expects to complete by early summer 2013 its final report, which will address all of the elements in the study's terms of reference and explore many potential issues of capability surprise for U.S. naval forces not covered in this interim report.
From a military operational standpoint, surprise is an event or capability that could affect the outcome of a mission or campaign for which preparations are not in place. By definition, it is not possible to truly anticipate surprise. It is only possible to prevent it (in the sense of minimizing the number of possible surprises by appropriate planning), to create systems that are resilient to an adversary's unexpected actions, or to rapidly and effectively respond when surprised. Responding to Capability Surprise examines the issues surrounding capability surprise, both operational and technical, facing the U.S. Navy, Marine Corps, and Coast Guard. This report selects a few surprises from across a continuum of surprises, from disruptive technologies, to intelligence-inferred capability developments, to operational deployments, and assesses what the Naval Forces are doing (and could do) about them while being mindful of future budgetary declines. The report then examines which processes are in place or could be in place in the Navy, the Marine Corps, and the Coast Guard to address such surprises. Today's U.S. naval forces continue to face a wide range of potential threats in the indefinite future and for this reason must continue to balance and meet their force structure needs. The recommendations of Responding to Capability Surprise will help to ensure more responsive, more resilient, and more adaptive behavior across the organization from the most senior leadership to the individual sailors, Marines, and Coast Guardsmen.
At the request of the former Chief of Naval Operations, the National Research Council appointed an expert committee to examine U.S. Naval Forces' capabilities for responding to the potential exploitation of small vessels by adversaries. The Department of the Navy determined that the report prepared by the committee is classified in its entirety under Executive Order 13526 and therefore cannot be made available to the public. This abbreviated report provides background information on the full report and the committee that prepared it.
The growth of the terrorism threat to the nation's security has created significant strategic challenges for U.S. armed forces in fighting this global war on terrorism (GWOT). For the Navy, the challenges have centered on developing maritime capabilities to prosecute the GWOT as far forward as possible. To assist the Navy's planning in this area, the former Chief of Naval Operations requested the NRC to conduct an assessment of the adequacy of and prospects for improving the role of Naval Forces in the GWOT. The study developed a defense-in-depth framework as the organizing principle for the report. The report contains information as described in 5 U.S.C. 552(b) and therefore could not be released to the public in its entirety. The public version consists of an executive summary that presents an assessment of the transformation of naval forces for addressing the GWOT; a brief description of the defense-in-depth framework; and a list of findings and major recommendations.
The Department of Defense is in the process of transforming the nation's armed forces to meet the military challenges of the 21st century. Currently, the opportunity exists to carry out experiments at individual and joint service levels to facilitate this transformation. Experimentation, which involves a spectrum of activities including analyses, war games, modeling and simulation, small focused experiments, and large field events among other things, provides the means to enhance naval and joint force development. To assist the Navy in this effort, the Chief of Naval Operations (CNO) asked the National Research Council (NRC) to conduct a study to examine the role of experimentation in building future naval forces to operate in the joint environment. The NRC formed the Committee for the Role of Experimentation in Building Future Naval Forces to perform the study.
U.S. naval forces must be prepared to respond to a broad array of threats. Of increasing importance are those from chemical and biological warfare (CW and BW). To help review its current state of preparedness, the Chief of Naval Operations asked the National Research Council (NRC) to assess the U.S. Navy's defense capabilities against CW and BW threats. In particular to what extent are they being developed to enable naval forces to sense and analyze quickly the presence of chemical and biological agents, withstand or avoid exposure to such agents, deal with contamination under a broad spectrum of operational conditions, and over what period will these capabilities be realized. This report presents the results of that assessment. It provides an overview of the potential threats, and an evaluation of the Navy's operations, non-medical programs, and medical countermeasures designed to confront those threats. The report also presents a series of general and specific findings and recommendations based on these assessments.
The Department of Defense (DOD) is committed to transforming the nation's armed forces to meet the military challenges of the future. One approach to achieving this transformation is by leveraging advances in science and technology. New technologies and innovations are integral to today's military actions, and associated changes have rippled through all aspects of operations, highlighting the need for changes in policies related to military personnel. At the request of the Force Chief of Naval Operations, the NRC reviewed the military manpower and personnel policies and studies currently underway in the DOD and developed an implementation strategy for the Department of the Navy's future military manpower and personnel needs. This book presents an introduction to current personnel policies of and concerns facing the Naval forces; an assessment of demographic, technological, and other forces affecting future personnel needs and availability; a summary and assessment of previous studies; an examination of the role of research tools in implementing personnel policy change; and an analysis of obstacles to and strategies for transforming the Naval forces.
The Department of the Navy strives to maintain, through its Office of Naval Research (ONR), a vigorous science and technology (S&T) program in those areas considered critically important to U.S. naval superiority in the maritime environment, including littoral waters and shore regions. In pursuing its S&T investments in such areas, ONR must ensure that (1) a robust U.S. research capability to work on long-term S&T problems in areas of interest to the Department of the Navy and the Department of Defense is sustained, (2) an adequate supply of new scientists and engineers in these areas is maintained, and (3) S&T products and processes necessary to ensure future superiority in naval warfare are provided. One of the critical areas for the Department of the Navy is undersea weapons. An Assessment of Undersea Weapons Science and Technology assesses the health of the existing Navy program in undersea weapons, evaluates the Navy's research effort to develop the capabilities needed for future undersea weapons, identifies non-Navy-sponsored research and development efforts that might facilitate the development of such advanced weapons capabilities, and makes recommendations to focus the Navy's research program so that it can meet future needs.
The Navy has put forth a new construct for its strike forces that enables more effective forward deterrence and rapid response. A key aspect of this construct is the need for flexible, adaptive command, control, communications, computers, intelligence, surveillance, and reconnaissance (C4ISR) systems. To assist development of this capability, the Navy asked the NRC to examine C4ISR for carrier, expeditionary, and strike and missile defense strike groups, and for expeditionary strike forces. This report provides an assessment of C4ISR capabilities for each type of strike group; recommendations for C4ISR architecture for use in major combat operations; promising technology trends; and an examination of organizational improvements that can enable the recommended architecture.
The Department of Defense is developing the means to transform the nation's armed forces to meet future military challenges. For the Navy and Marine Corps, this vision is encompassed in Naval Power 21. Many new war-fighting concepts will be needed to implement this vision, and the ONR has requested the NRC to identify new science and technology opportunities for new naval aviation capabilities to support those concepts. This report presents an assessment of what they imply for naval aviation, an analysis of some capabilities that, if developed, would make a significant contribution to realizing those concepts, and an identification of key technologies in which ONR could invest to achieve those capabilities. In particular, the report focuses on seven key capabilities: multispectral defense, unmanned air operations, hypersonic weapons delivery, fast-kill weapons, heavy-lift air transport, intelligent combat information management, and omniscient intelligence.
In response to the Chief of Naval Operations (CNO), the National Research Council appointed a committee operating under the auspices of the Naval Studies Board to study the national security implications of climate change for U.S. naval forces. In conducting this study, the committee found that even the most moderate current trends in climate, if continued, will present new national security challenges for the U.S. Navy, Marine Corps, and Coast Guard. While the timing, degree, and consequences of future climate change impacts remain uncertain, many changes are already underway in regions around the world, such as in the Arctic, and call for action by U.S. naval leadership in response. The terms of reference (TOR) directed that the study be based on Intergovernmental Panel on Climate Change (IPCC) scenarios and other peer-reviewed assessment. Therefore, the committee did not address the science of climate change or challenge the scenarios on which the committee's findings and recommendations are based. National Security Implications of Climate Change for U.S. Naval Forces addresses both the near- and long-term implications for U.S. naval forces in each of the four areas of the TOR, and provides corresponding findings and recommendations. This report and its conclusions are organized around six discussion areas-all presented within the context of a changing climate.
The Department of the Navy wants to improve shore installation operations, readiness, and management by skillfully leveraging state-of-the-market technologies and business methods such as outsourcing, privatization, and partnerships with state and local governments, with a goal of reduced cost of infrastructure. For the Navy itself, where all forces float or fly, the shore establishment is synonymous with infrastructure, which includes "all activities that provide sup port or control of forces from fixed bases of operation.
Sea mines have been important in naval warfare throughout history and continue to be so today. They have caused major damage to naval forces, slowed or stopped naval actions and commercial shipping, and forced the alteration of strategic and tactical plans. The threat posed by sea mines continues, and is increasing, in today's world of inexpensive advanced electronics, nanotechnology, and multiple potential enemies, some of which are difficult to identify. This report assesses the Department of the Navy's capabilities for conducting naval mining and countermining sea operations.
Presents "the committee's findings and recommendations, at this stage of the study, under the following four key topics, which are embedded in the terms of reference: (1) naval capabilities and potential climate-change-related operational issues globally, together with the closely related matter of the role of allied partnerships in regard to such global operational issues; (2) climate change impacts on global naval installations; (3) naval capabilities and potential climate-change-related operational issues in the Arctic; and (4) climate-change-related technical issues impacting naval operations, particularly in the Arctic"--Page 3.
Accurate and timely environmental information can provide a tactical advantage to U.S. naval forces during warfare. This report analyzes the current environmental information system used by the U.S. Navy and Marine Corps and recommends ways to address uncertainty and leverage network-centric operating principles to enhance the value of environmental information.
To offer security in the maritime domain, governments around the world need the capabilities to directly confront common threats like piracy, drug-trafficking, and illegal immigration. No single navy or nation can do this alone. Recognizing this new international security landscape, the former Chief of Naval Operations called for a collaborative international approach to maritime security, initially branded the "1,000-ship Navy." This concept envisions U.S. naval forces partnering with multinational, federal, state, local and private sector entities to ensure freedom of navigation, the flow of commerce, and the protection of ocean resources. This new book from the National Research Council examines the technical and operational implications of the "1,000-ship Navy," as they apply to four levels of cooperative efforts: U.S. Navy, Coast Guard, and merchant shipping only; U.S. naval and maritime assets with others in treaty alliances or analogous arrangements; U.S. naval and maritime assets with ad hoc coalitions; and U.S. naval and maritime assets with others than above who may now be friendly but could potentially be hostile, for special purposes such as deterrence of piracy or other criminal activity.
At the request of the Chief of Naval Operations, the National Research Council (NRC) conducted a study to determine the technological requirements, operational changes, and combat service support structure necessary to land and support forces ashore under the newly evolving Navy and Marine Corps doctrine. The Committee on Naval Expeditionary Logistics, operating under the auspices of the NRC's Naval Studies Board, was appointed to (1) evaluate the packaging, sealift, and distribution network and identify critical nodes and operations that affect timely insertion of fuels, ammunition, water, medical supplies, food, vehicles, and maintenance parts and tool blocks; (2) determine specific changes required to relieve these critical nodes and support forces ashore, from assault through follow-on echelonment; and (3) present implementable changes to existing support systems, and suggest the development of innovative new systems and technologies to land and sustain dispersed units from the shoreline to 200 miles inland. In the course of its study, the committee soon learned that development of OMFTS is not yet at a stage to allow, directly, detailed answers to many of these questions. As a result, the committee addressed the questions in terms of the major logistics functions of force deployment, force sustainment, and force medical support, and the fundamental logistics issues related to each of these functions.
The availability of land bases from which to launch and maintain military, diplomatic, and humanitarian relief operations is becoming increasingly uncertain because of physical or political constraints. The ability to operate from a sea base, therefore, is likely to become more and more important. The Defense Science Board recently concluded that Sea Basing will be a critical future joint military capability and that DOD should proceed to develop such capability. Following the DSB report, the Navy requested that the National Research Council (NRC) convene a workshop to assess the science and technology base, both inside and outside the Navy, for developing Sea Basing and to identify R&D for supporting future concepts. This report of the workshop includes an examination of Sea Basing operational concepts; ship and aircraft technology available to make Sea Basing work; and issues involved in creating the sea base as a joint system of systems.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.