The stresses associated with climate change are expected to be felt keenly as human population grows to a projected 9 billion by the middle of this century, increasing the demand for resources and supporting infrastructure. Therefore, information to assess vulnerabilities to climate change is needed to support policies and investments designed to increase resilience in human and Earth systems. There are currently many observing systems that capture elements of how climate is changing, for example, direct measurements of atmospheric and ocean temperature. Although those measurements are essential for understanding the scale and nature of climate change, they do not necessarily provide information about the impacts of climate change on humans that are especially relevant for political and economic planning and decision making. Monitoring Climate Change Impacts tackles the challenge of developing an illustrative suite of indicators, measurements (and the locations around the globe where the measurements can be applied), and metrics that are important for understanding global climate change and providing insight into environmental sustainability. Eight panels provided input on: cryosphere, land-surface and terrestrial ecosystems, hydrology and water resources, atmosphere, human health and other dimensions, oceans (both physical and biological/chemical), and natural disasters. The book also provides an illustrative set of metrics that are likely to be affected by climate change over the next 20-25 years and, when taken together, can potentially give advance warning of climate-related changes to the human and environment systems.
The U.S. government supports a large, diverse suite of activities that can be broadly characterized as "global change research." Such research offers a wide array of benefits to the nation, in terms of protecting public health and safety, enhancing economic strength and competitiveness, and protecting the natural systems upon which life depends. The U.S. Global Change Research Program (USGCRP), which coordinates the efforts of numerous agencies and departments across the federal government, was officially established in 1990 through the U.S. Global Change Research Act (GCRA). In the subsequent years, the scope, structure, and priorities of the Program have evolved, (for example, it was referred to as the Climate Change Science Program [CCSP] for the years 2002-2008), but throughout, the Program has played an important role in shaping and coordinating our nation's global change research enterprise. This research enterprise, in turn, has played a crucial role in advancing understanding of our changing global environment and the countless ways in which human society affects and is affected by such changes. In mid-2011, a new NRC Committee to Advise the USGCRP was formed and charged to provide a centralized source of ongoing whole-program advice to the USGCRP. The first major task of this committee was to provide a review of the USGCRP draft Strategic Plan 2012-2021 (referred to herein as "the Plan"), which was made available for public comment on September 30, 2011. A Review of the U.S. Global Change Research Program's Strategic Plan addresses an array of suggestions for improving the Plan, ranging from relatively small edits to large questions about the Program's scope, goals, and capacity to meet those goals. The draft Plan proposes a significant broadening of the Program's scope from the form it took as the CCSP. Outlined in this report, issues of key importance are the need to identify initial steps the Program will take to actually achieve the proposed broadening of its scope, to develop critical science capacity that is now lacking, and to link the production of knowledge to its use; and the need to establish an overall governance structure that will allow the Program to move in the planned new directions.
The report reviews a draft strategic plan from the U.S. Climate Change Science Program, a program formed in 2002 to coordinate and direct U.S. efforts in climate change and global change research. The U.S. Climate Change Science Program incorporates the decade-old Global Change Research Program and adds a new component -the Climate Change Research Initiative-whose primary goal is to "measurably improve the integration of scientific knowledge, including measures of uncertainty, into effective decision support systems and resources.
The U.S. Climate Change Science Program (CCSP) coordinates the efforts of 13 federal agencies to understand why climate is changing, to improve predictions about how it will change in the future, and to use that information to assess impacts on human systems and ecosystems and to better support decision making. Evaluating Progress of the U.S. Climate Change Science Program is the first review of the CCSP's progress since the program was established in 2002. It lays out a method for evaluating the CCSP, and uses that method to assess the strengths and weaknesses of the entire program and to identify areas where progress has not met expectations. The committee found that the program has made good progress in documenting and understanding temperature trends and related environmental changes on a global scale, as well as in understanding the influence of human activities on these observed changes. The ability to predict future climate changes also has improved, but efforts to understand the impacts of such changes on society and analyze mitigation and adaptation strategies are still relatively immature. The program also has not met expectations in supporting decision making, studying regional impacts, and communicating with a wider group of stakeholders.
The U.S. Global Change Research Program (USGCRP) is an interagency program, established by the Global Change Research Act (GCRA) of 1990, mandated by Congress to "assist the Nation and the world to understand, assess, predict, and respond to human-induced and natural processes of global change". Since the USGCRP began, scientific understanding of global change has increased and the information needs of the nation have changed dramatically. A better understanding of what is changing and why can help decision makers in the public and private sectors cope with ongoing change. Accomplishments of the U.S. Global Change Research Program highlights the growth of global change science in the quarter century that the USGCRP has been in existence, and documents some of its contributions to that growth through its primary functions of interagency planning and coordination, and of synthesis of research and practice to inform decision making.
Changes in climate are driven by natural and human-induced perturbations of the Earth's energy balance. These climate drivers or "forcings" include variations in greenhouse gases, aerosols, land use, and the amount of energy Earth receives from the Sun. Although climate throughout Earth's history has varied from "snowball" conditions with global ice cover to "hothouse" conditions when glaciers all but disappeared, the climate over the past 10,000 years has been remarkably stable and favorable to human civilization. Increasing evidence points to a large human impact on global climate over the past century. The report reviews current knowledge of climate forcings and recommends critical research needed to improve understanding. Whereas emphasis to date has been on how these climate forcings affect global mean temperature, the report finds that regional variation and climate impacts other than temperature deserve increased attention.
In response to the Chief of Naval Operations (CNO), the National Research Council appointed a committee operating under the auspices of the Naval Studies Board to study the national security implications of climate change for U.S. naval forces. In conducting this study, the committee found that even the most moderate current trends in climate, if continued, will present new national security challenges for the U.S. Navy, Marine Corps, and Coast Guard. While the timing, degree, and consequences of future climate change impacts remain uncertain, many changes are already underway in regions around the world, such as in the Arctic, and call for action by U.S. naval leadership in response. The terms of reference (TOR) directed that the study be based on Intergovernmental Panel on Climate Change (IPCC) scenarios and other peer-reviewed assessment. Therefore, the committee did not address the science of climate change or challenge the scenarios on which the committee's findings and recommendations are based. National Security Implications of Climate Change for U.S. Naval Forces addresses both the near- and long-term implications for U.S. naval forces in each of the four areas of the TOR, and provides corresponding findings and recommendations. This report and its conclusions are organized around six discussion areas-all presented within the context of a changing climate.
During the past decade, scientists have learned much about the complex natural processes that influence climate variability and change, and our ability to model climate has increased significantly. We also have begun to better identify those parts of the climate system that are particularly important and not well understood and that therefore limit our ability to project the future evolution of Earth's climate. One of these critical areas is our understanding of the role of feedbacks in the climate system and their role in determining climate sensitivity. Feedbacks are processes in the climate system that can either amplify or dampen the system's response to changed forcings. This study looks at what is known and not known about climate change feedbacks and seeks to identify the feedback processes most in need of improved understanding. It identifies key observations needed to monitor and understand climate feedbacks, discusses ways to evaluate progress in understanding climate feedbacks, recommends ways to improve climate modeling and analysis for climate feedbacks research, and identifies priority areas for research.
The Update to the Strategic Plan (USP) is a supplement to the Ten-Year Strategic Plan of the U.S. Global Change Research Program (USGCRP) completed in 2012. The Strategic Plan sets out a research program guiding thirteen federal agencies in accord with the Global Change Research Act of 1990. This report reviews whether USGCRP's efforts to achieve its goals and objectives, as documented in the USP, are adequate and responsive to the Nation's needs, whether the priorities for continued or increased emphasis are appropriate, and if the written document communicates effectively, all within a context of the history and trajectory of the Program.
The Climate Change Science Program (CCSP) and its predecessor U.S. Global Change Research Program have sponsored climate research and observations for nearly 15 years, yet the overall progress of the program has not been measured systematically. Metricsâ€"a system of measurement that includes the item being measured, the unit of measurement, and the value of the unitâ€"offer a tool for measuring such progress; improving program performance; and demonstrating program successes to Congress, the Office of Management and Budget, and the public. This report lays out a framework for creating and implementing metrics for the CCSP. A general set of metrics provides a starting point for identifying the most important measures, and the principles provide guidance for refining the metrics and avoiding unintended consequences.
This book recommends research priorities and scientific approaches for global change research. It addresses the scientific approaches for documenting global change, developing integrated earth system models, and conducting focused studies to improve understanding of global change on topics such as earth system history and human sources of global change.
As climate change has pushed climate patterns outside of historic norms, the need for detailed projections is growing across all sectors, including agriculture, insurance, and emergency preparedness planning. A National Strategy for Advancing Climate Modeling emphasizes the needs for climate models to evolve substantially in order to deliver climate projections at the scale and level of detail desired by decision makers, this report finds. Despite much recent progress in developing reliable climate models, there are still efficiencies to be gained across the large and diverse U.S. climate modeling community. Evolving to a more unified climate modeling enterprise-in particular by developing a common software infrastructure shared by all climate researchers and holding an annual climate modeling forum-could help speed progress. Throughout this report, several recommendations and guidelines are outlined to accelerate progress in climate modeling. The U.S. supports several climate models, each conceptually similar but with components assembled with slightly different software and data output standards. If all U.S. climate models employed a single software system, it could simplify testing and migration to new computing hardware, and allow scientists to compare and interchange climate model components, such as land surface or ocean models. A National Strategy for Advancing Climate Modeling recommends an annual U.S. climate modeling forum be held to help bring the nation's diverse modeling communities together with the users of climate data. This would provide climate model data users with an opportunity to learn more about the strengths and limitations of models and provide input to modelers on their needs and provide a venue for discussions of priorities for the national modeling enterprise, and bring disparate climate science communities together to design common modeling experiments. In addition, A National Strategy for Advancing Climate Modeling explains that U.S. climate modelers will need to address an expanding breadth of scientific problems while striving to make predictions and projections more accurate. Progress toward this goal can be made through a combination of increasing model resolution, advances in observations, improved model physics, and more complete representations of the Earth system. To address the computing needs of the climate modeling community, the report suggests a two-pronged approach that involves the continued use and upgrading of existing climate-dedicated computing resources at modeling centers, together with research on how to effectively exploit the more complex computer hardware systems expected over the next 10 to 20 years.
Climate projections show that Britain can expect wetter winters, drier summers and a higher likelihood of flash-floods, heat waves and droughts. Yet adaptation to climate change has been given only a fraction of the attention that has gone into reducing greenhouse gases. The Government must build awareness and support for the wide-ranging and urgent programme of action that is needed to protect people, property and prosperity and safeguard the natural environment. Adapting infrastructure and homes will be expensive. To maintain current levels of flood protection for homes, real terms spending on flood defences will need to increase from its current level of around £600 million per annum to around £1 billion in 2035. Estimates in 2009 suggest that by the end of the century around £7 billion may be needed to improve the Thames flood barrier and tidal defences. New homes being built now must be designed to cope with the inevitable changes in climate over the next 50 - 80 years. The Government must make adaptation and mitigation more central to the planning system. New developments should only be permitted if they are suited to future climates. Existing homes will also need to be adapted so that they are comfortable during hotter summers and better protected against the risk of flooding. The Government must help to kick start an integrated retro-fitting programme that covers adaptation, water efficiency and energy efficiency. Green infrastructure - such as water storage, greater tree cover and more open green spaces - must also be promoted.
How can we understand and rise to the environmental challenges of global change? One clear answer is to understand the science of global change, not solely in terms of the processes that control changes in climate and the composition of the atmosphere, but in how ecosystems and human society interact with these changes. In the last two decades of the twentieth century, a number of such research efforts--supported by computer and satellite technology--have been launched. Yet many opportunities for integration remain unexploited, and many fundamental questions remain about the earth's capacity to support a growing human population. This volume encourages a renewed commitment to understanding global change and sets a direction for research in the decade ahead. Through case studies the book explores what can be learned from the lessons of the past 20 years and what are the outstanding scientific questions. Highlights include: Research imperatives and strategies for investigators in the areas of atmospheric chemistry, climate, ecosystem studies, and human dimensions of global change. The context of climate change, including lessons to be gleaned from paleoclimatology. Human responses to--and forcing of--projected global change. This book offers a comprehensive overview of global change research to date and provides a framework for answering urgent questions.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.