In the military, information technology (IT) has enabled profound advances in weapons systems and the management and operation of the defense enterprise. A significant portion of the Department of Defense (DOD) budget is spent on capabilities acquired as commercial IT commodities, developmental IT systems that support a broad range of warfighting and functional applications, and IT components embedded in weapons systems. The ability of the DOD and its industrial partners to harness and apply IT for warfighting, command and control and communications, logistics, and transportation has contributed enormously to fielding the world's best defense force. However, despite the DOD's decades of success in leveraging IT across the defense enterprise, the acquisition of IT systems continues to be burdened with serious problems. To address these issues, the National Research Council assembled a group of IT systems acquisition and T&E experts, commercial software developers, software engineers, computer scientists and other academic researchers. The group evaluated applicable legislative requirements, examined the processes and capabilities of the commercial IT sector, analyzed DOD's concepts for systems engineering and testing in virtual environments, and examined the DOD acquisition environment. The present volume summarizes this analysis and also includes recommendations on how to improve the acquisition, systems engineering, and T&E processes to achieve the DOD's network-centric goals.
During the past decade and a half, the National Research Council, through its Committee on National Statistics, has carried out a number of studies on the application of statistical methods to improve the testing and development of defense systems. These studies were intended to provide advice to the Department of Defense (DOD), which sponsored these studies. The previous studies have been concerned with the role of statistical methods in testing and evaluation, reliability practices, software methods, combining information, and evolutionary acquisition. Industrial Methods for the Effective Testing and Development of Defense Systems is the latest in a series of studies, and unlike earlier studies, this report identifies current engineering practices that have proved successful in industrial applications for system development and testing. This report explores how developmental and operational testing, modeling and simulation, and related techniques can improve the development and performance of defense systems, particularly techniques that have been shown to be effective in industrial applications and are likely to be useful in defense system development. In addition to the broad issues, the report identifies three specific topics for its focus: finding failure modes earlier, technology maturity, and use of all relevant information for operational assessments.
The Vision for Space Exploration (VSE) announced by President George W. Bush in 2004 sets NASA and the nation on a bold path to return to the Moon and one day put a human on Mars. The long-term endeavor represented by the VSE is, however, subject to the constraints imposed by annual funding. Given that the VSE may take tens of years to implement, a significant issue is whether NASA and the United States will have the workforce needed to achieve that vision. The issues range from short-term concerns about the current workforce's skills for overseeing the development of new spacecraft and launch vehicles for the VSE to long-term issues regarding the training, recruiting, and retaining of scientists and engineers in-house as well as in industry and academia. Asked to explore science and technology (S&T) workforce needs to achieve the nation's long-term space exploration, the Committee on Meeting the Workforce Needs for the National Vision for Space Exploration concluded that in the short term, NASA does not possess the requisite in-house personnel with the experience in human spaceflight systems development needed to implement the VSE. But the committee acknowledges that NASA is cognizant of this fact and has taken steps to correct it, primarily by seeking to recruit highly skilled personnel from outside NASA, including persons from industry and retirees. For the long term, NASA has to ask if it is attracting and developing the talent it will need to execute a mission to return to the Moon, and the agency must identify what it needs to do to attract and develop a world-class workforce to explore other worlds. A major challenge for NASA is reorienting its human spaceflight workforce from the operation of current vehicles to the development of new vehicles at least throughout the next decade, as well as starting operations with new rockets and new spacecraft. The committee emphasizes further that when evaluating its future workforce requirements, NASA has to consider not only programs for students, but also training opportunities for its current employees. NASA's training programs at the agency's various field centers, which are focused on NASA's civil service talent, require support to prevent the agency's internal skill base from withering. Furthermore, NASA faces the risk that, if it fails to nurture its own internal workforce, skilled personnel will be attracted to other government agencies and industry. Building a Better NASA Workforce: Meeting the Workforce Needs for the National Vision for Space Exploration explains the findings and recommendations of the committee.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.