Ocean science connects a global community of scientists in many disciplines - physics, chemistry, biology, geology and geophysics. New observational and computational technologies are transforming the ability of scientists to study the global ocean with a more integrated and dynamic approach. This enhanced understanding of the ocean is becoming ever more important in an economically and geopolitically connected world, and contributes vital information to policy and decision makers charged with addressing societal interests in the ocean. Science provides the knowledge necessary to realize the benefits and manage the risks of the ocean. Comprehensive understanding of the global ocean is fundamental to forecasting and managing risks from severe storms, adapting to the impacts of climate change, and managing ocean resources. In the United States, the National Science Foundation (NSF) is the primary funder of the basic research which underlies advances in our understanding of the ocean. Sea Change addresses the strategic investments necessary at NSF to ensure a robust ocean scientific enterprise over the next decade. This survey provides guidance from the ocean sciences community on research and facilities priorities for the coming decade and makes recommendations for funding priorities.
Ocean science connects a global community of scientists in many disciplines - physics, chemistry, biology, geology and geophysics. New observational and computational technologies are transforming the ability of scientists to study the global ocean with a more integrated and dynamic approach. This enhanced understanding of the ocean is becoming ever more important in an economically and geopolitically connected world, and contributes vital information to policy and decision makers charged with addressing societal interests in the ocean. Science provides the knowledge necessary to realize the benefits and manage the risks of the ocean. Comprehensive understanding of the global ocean is fundamental to forecasting and managing risks from severe storms, adapting to the impacts of climate change, and managing ocean resources. In the United States, the National Science Foundation (NSF) is the primary funder of the basic research which underlies advances in our understanding of the ocean. Sea Change addresses the strategic investments necessary at NSF to ensure a robust ocean scientific enterprise over the next decade. This survey provides guidance from the ocean sciences community on research and facilities priorities for the coming decade and makes recommendations for funding priorities.
The ocean is an integral component of the Earth's climate system. It covers about 70% of the Earth's surface and acts as its primary reservoir of heat and carbon, absorbing over 90% of the surplus heat and about 30% of the carbon dioxide associated with human activities, and receiving close to 100% of fresh water lost from land ice. With the accumulation of greenhouse gases in the atmosphere, notably carbon dioxide from fossil fuel combustion, the Earth's climate is now changing more rapidly than at any time since the advent of human societies. Society will increasingly face complex decisions about how to mitigate the adverse impacts of climate change such as droughts, sea-level rise, ocean acidification, species loss, changes to growing seasons, and stronger and possibly more frequent storms. Observations play a foundational role in documenting the state and variability of components of the climate system and facilitating climate prediction and scenario development. Regular and consistent collection of ocean observations over decades to centuries would monitor the Earth's main reservoirs of heat, carbon dioxide, and water and provides a critical record of long-term change and variability over multiple time scales. Sustained high-quality observations are also needed to test and improve climate models, which provide insights into the future climate system. Sustaining Ocean Observations to Understand Future Changes in Earth's Climate considers processes for identifying priority ocean observations that will improve understanding of the Earth's climate processes, and the challenges associated with sustaining these observations over long timeframes.
The Earth system functions and connects in unexpected ways - from the microscopic interactions of bacteria and rocks to the macro-scale processes that build and erode mountains and regulate Earth's climate. Efforts to study Earth's intertwined processes are made even more pertinent and urgent by the need to understand how the Earth can continue to sustain both civilization and the planet's biodiversity. A Vision for NSF Earth Sciences 2020-2030: Earth in Time provides recommendations to help the National Science Foundation plan and support the next decade of Earth science research, focusing on research priorities, infrastructure and facilities, and partnerships. This report presents a compelling and vibrant vision of the future of Earth science research.
The National Research Council has conducted 11 decadal surveys in the Earth and space sciences since 1964 and released the latest four surveys in the past 8 years. The decadal surveys are notable in their ability to sample thoroughly the research interest, aspirations, and needs of a scientific community. Through a rigorous process, a primary survey committee and thematic panels of community members construct a prioritized program of science goals and objectives and define an executable strategy for achieving them. These reports play a critical role in defining the nation's agenda in that science area for the following 10 years, and often beyond. The Space Science Decadal Surveys considers the lessons learned from previous surveys and presents options for possible changes and improvements to the process, including the statement of task, advanced preparation, organization, and execution. This report discusses valuable aspects of decadal surveys that could taken further, as well as some challenges future surveys are likely to face in searching for the richest areas of scientific endeavor, seeking community consensus of where to go next, and planning how to get there. The Space Science Decadal Surveys describes aspects in the decadal survey prioritization process, including balance in the science program and across the discipline; balance between the needs of current researchers and the development of the future workforce; and balance in mission scale - smaller, competed programs versus large strategic missions.
The National Science Foundation's Division of Atmospheric Sciences (ATM) supports research to develop new understanding of Earth's atmosphere and how the Sun impacts it. Strategic Guidance for the National Science Foundation's Support of the Atmospheric Sciences provides guidance to ATM on its strategy for achieving its goals in the atmospheric sciences, including cutting-edge research, education and workforce development, service to society, computational and observational objectives, and data management. The report reviews how the atmospheric sciences have evolved over the past several decades and analyzes the strengths and limitations of the various modes of support employed by ATM. It concludes that ATM is operating in an environment that is ever more cross-disciplinary, interagency, and international, making a more strategic approach necessary to manage activities in a way that actively engages the atmospheric sciences community. At the same time, ATM should preserve opportunities for basic research, especially projects that are high risk, potentially transformative, or unlikely to be supported by other government agencies. Finally, ATM needs to be more proactive in attracting highly talented students to the atmospheric sciences as an investment in the ability to make future breakthroughs.
In its fiscal year 2002 budget summary document the Bush administration expressed concern-based in part on the findings and conclusions of two National Research Council studies-about recent trends in the federal funding of astronomy and astrophysics research. The President's budget blueprint suggested that now is the time to address these concerns and directed the National Science Foundation (NSF) and the National Aeronautics and Space Administration (NASA) to establish a blue ribbon panel to (1) assess the organizational effectiveness of the federal research enterprise in astronomy and astrophysics, (2) consider the pros and cons of transferring NSF's astronomy responsibilities to NASA, and (3) suggest alternative options for addressing issues in the management and organization of astronomical and astrophysical research. NASA and NSF asked the National Research Council to carry out the rapid assessment requested by the President. This report, focusing on the roles of NSF and NASA, provides the results of that assessment.
Ocean research offers countless benefits, from improving fisheries management to discovering new drugs to enabling early detection of tsunamis and hurricanes. At the request of the Joint Subcommittee on Ocean Science and Technology (JSOST), the National Research Council convened a committee to review the draft and final versions of the Ocean Research Priorities Plan and Implementation Strategy described in Charting the Course for Ocean Science in the United States: Research Priorities for the Next Decade, which represents the first coordinated national ocean research planning effort involving all federal agencies that support ocean science. The plan presents an ambitious vision for ocean research that will be of great benefit to the ocean sciences community and the nation. This book contains both sets of findings (i.e., the committee's review of the JSOST's draft plan [A Review of the Draft Ocean Research Priorities Plan: Charting the Course for Ocean Science in the United States] and the review of the final plan). This book recommends that JSOST employ a variety of outreach mechanisms to continue to engage nonfederal partners in ocean research planning efforts, such as establishing external committees to provide scientific and technical advice and to review progress on implementation of the research plan.
In 1995, the National Science Foundation (NSF) created a special account to fund large (several tens of millions of dollars) research facilities. Over the years, these facilities have come to represent an increasingly prominent part of the nation's R&D portfolio. Recently concern has intensified about the way NSF is selecting projects for this account. In 2003, six U.S. Senators including the chair and ranking member of the Senate Subcommittee on VA, HUD, and Independent Agencies Appropriations expressed these concerns in a letter to the NRC asking it to "review the current prioritization process and report to us on how it can be improved." This report presents a series of recommendations on how NSF can improve its priority setting process for large research facilities. While noting that NSF has improved this process, the report states that further strengthening is needed if NSF is to meet future demands for such projects.
The United States has jurisdiction over 3.4 million square miles of ocean in its exclusive economic zone, a size exceeding the combined land area of the 50 states. This expansive marine area represents a prime national domain for activities such as maritime transportation, national security, energy and mineral extraction, fisheries and aquaculture, and tourism and recreation. However, it also carries with it the threat of damaging and outbreaks of waterborne pathogens. The 2010 Gulf of Mexico Deepwater Horizon oil spill and the 2011 Japanese earthquake and tsunami are vivid reminders that ocean activities and processes have direct human implications both nationally and worldwide, understanding of the ocean system is still incomplete, and ocean research infrastructure is needed to support both fundamental research and societal priorities. Given current struggles to maintain, operate, and upgrade major infrastructure elements while maintaining a robust research portfolio, a strategic plan is needed for future investments to ensure that new facilities provide the greatest value, least redundancy, and highest efficiency in terms of operation and flexibility to incorporate new technological advances. Critical Infrastructure for Ocean Research and Societal Needs in 2030 identifies major research questions anticipated to be at the forefront of ocean science in 2030 based on national and international assessments, input from the worldwide scientific community, and ongoing research planning activities. This report defines categories of infrastructure that should be included in planning for the nation's ocean research infrastructure of 2030 and that will be required to answer the major research questions of the future. Critical Infrastructure for Ocean Research and Societal Needs in 2030 provides advice on the criteria and processes that could be used to set priorities for the development of new ocean infrastructure or replacement of existing facilities. In addition, this report recommends ways in which the federal agencies can maximize the value of investments in ocean infrastructure.
Seventy percent of our blue planet is covered by oceans. Although progress has been made in understanding the role of oceans in climate change, locating energy reserves, revealing new life forms, and describing the flow of carbon through these systems, it may be time to catapult our understanding to new levels by undertaking an interdisciplinary, international, global ocean exploration program. The interim report outlines the committee's vision for a future international global ocean exploration program; this vision will be fully described, together with detailed recommendations for technological needs and capabilities, funding levels, and management structures to ensure a productive and successful ocean exploration program.
This book summarizes three symposia that were convened in the California, Gulf of Maine, and Gulf of Mexico regions to seek new ways to improve the use of science in coastal policymaking. The book recommends actions that could be taken by federal and state agencies and legislatures, local authorities, scientists, universities, the media, nongovernmental organizations, and the public to yield better coastal decisions and policies. It is unique in that it resulted from a partnership among natural scientists, social scientists, and policymakers.
There is a national need to educate the public about the ocean, coastal resources, atmosphere and climate. The National Oceanic and Atmospheric Administration (NOAA), the agency responsible for understanding and predicting changes in the Earth's environment and conserving and managing coastal and marine resources to meet the nation's economic, social and environmental needs, has a broad mandate to engage and coordinate education initiatives on these topics. Since its creation in 1970, the NOAA has supported a variety of education projects that cover a range of topics related to the agency's scientific and stewardship mission. NOAA uses formal and informal learning environments to enhance understanding of science, technology, engineering and mathematics (STEM) and to advance environmental education. The work of this agency overlaps and compliments the missions of other federal agencies, institutions of higher education, private and nonprofit organizations. Coordination among these agencies and organizations has been challenging. Limited education resources and the inherently global nature of NOAA's mission make strategic partnerships critical in order for the agency to accomplish its goals. Additionally, clear education goals, planning, and strategic use of resources are critical aspects for effective partnerships. NOAA's Education Program: Review and Critique provides a summary of the national education context for NOAA's role in education which is twofold: first is to advance the environmental literacy of the nation, and second is to promote a diverse workforce in ocean, coastal, Great Lakes, atmospheric and climate sciences. The book also describes the strengths and weaknesses of the education strategic plan, the education evaluation approach of the agency and strategies for improving the evaluation process.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.