The discovery of toxic pollution at Love Canal brought ground water contamination to the forefront of public attention. Since then, ground water science and modeling have become increasingly important in evaluating contamination, setting regulations, and resolving liability issues in court. A clearly written explanation of ground water processes and modeling, Ground Water Models focuses on the practical aspects of model application. It: examines the role of models in regulation, litigation, and policy development; explains ground water processes and describes specific applications for models; presents emerging technologies; and offers specific recommendations for better use of ground water science in policy formation.
Since the need to protect ground water from pollution was recognized, researchers have made progress in understanding the vulnerability of ground water to contamination. Yet, there are substantial uncertainties in the vulnerability assessment methods now available. With a wealth of detailed information and practical advice, this volume will help decision-makers derive the most benefit from available assessment techniques. It offers: Three laws of ground water vulnerability. Six case studies of vulnerability assessment. Guidance for selecting vulnerability assessments and using the results. Reviews of the strengths and limitations of assessment methods. Information on available data bases, primarily at the federal level. This book will be indispensable to policymakers and resource managers, environmental professionals, researchers, faculty, and students involved in ground water issues, as well as investigators developing new assessment methods.
And ConclusionsReferences; III METHODS OF WASTE DISPOSAL ; 4 Shallow Land Burial of Municipal Wastes; Introduction; Leachate Characteristics; Gas Production; Hydrogeologic Criteria; Unsaturated Flow; Site Size; Water Balance; Trench Covers; Trench Liners; Monitoring; Monitoring Methodology; Verification of Contamination; Conclusions; References; 5 Deep Burial Of Toxic Wastes; Introduction; Methods of Disposal; Advantages and Disadvantages of Deep Burial; A Hypothetical Repository; Hydrogeologic Properties of Rocks at Depth; General Data from Wells and Test Holes; Geochemical Evidence.
Most books on ground water and soil cleanup address only the technologies themselvesâ€"not why new technologies are or are not developed. Innovations in Ground Water and Soil Cleanup takes a holistic approach to the entire field, addressing both the sluggish commercial development of ground water and soil cleanup technologies and the attributes of specific technologies. It warns that, despite cleanup expenditures of nearly $10 billion a year, the technologies remain rudimentary. This engaging book focuses on the failure of regulatory policy to link cleanup with the financial interests of the company responsible for the contamination. The committee explores why the market for remediation technology is uniquely lacking in economic drivers and why demand for innovation has been so much weaker than predicted. The volume explores how to evaluate the performance of cleanup technologies from the points of view of the public, regulators, cleanup entrepreneurs, and other stakeholders. The committee discusses approaches to standardizing performance testing, so that choosing a technology for a given site can be more timely and less contentious. Following up on Alternatives for Ground Water Cleanup (NRC, 1994), this sequel presents the state of the art in the cleanup of various types of ground water and soil contaminants. Strategies for making valid cost comparisons also are reviewed.
How can the United States meet demands for agricultural production while solving the broader range of environmental problems attributed to farming practices? National policymakers who try to answer this question confront difficult trade-offs. This book offers four specific strategies that can serve as the basis for a national policy to protect soil and water quality while maintaining U.S. agricultural productivity and competitiveness. Timely and comprehensive, the volume has important implications for the Clean Air Act and the 1995 farm bill. Advocating a systems approach, the committee recommends specific farm practices and new approaches to prevention of soil degradation and water pollution for environmental agencies. The volume details methods of evaluating soil management systems and offers a wealth of information on improved management of nitrogen, phosphorus, manure, pesticides, sediments, salt, and trace elements. Landscape analysis of nonpoint source pollution is also detailed. Drawing together research findings, survey results, and case examples, the volume will be of interest to federal, state, and local policymakers; state and local environmental and agricultural officials and other environmental and agricultural specialists; scientists involved in soil and water issues; researchers; and agricultural producers.
In the past decade, officials responsible for clean-up of contaminated groundwater have increasingly turned to natural attenuation-essentially allowing naturally occurring processes to reduce the toxic potential of contaminants-versus engineered solutions. This saves both money and headaches. To the people in surrounding communities, though, it can appear that clean-up officials are simply walking away from contaminated sites. When is natural attenuation the appropriate approach to a clean-up? This book presents the consensus of a diverse committee, informed by the views of researchers, regulators, and community activists. The committee reviews the likely effectiveness of natural attenuation with different classes of contaminants-and describes how to evaluate the "footprints" of natural attenuation at a site to determine whether natural processes will provide adequate clean-up. Included are recommendations for regulatory change. The committee emphasizes the importance of the public's belief and attitudes toward remediation and provides guidance on involving community stakeholders throughout the clean-up process. The book explores how contamination occurs, explaining concepts and terms, and includes case studies from the Hanford nuclear site, military bases, as well as other sites. It provides historical background and important data on clean-up processes and goes on to offer critical reviews of 14 published protocols for evaluating natural attenuation.
The discovery of toxic pollution at Love Canal brought ground water contamination to the forefront of public attention. Since then, ground water science and modeling have become increasingly important in evaluating contamination, setting regulations, and resolving liability issues in court. A clearly written explanation of ground water processes and modeling, Ground Water Models focuses on the practical aspects of model application. It: examines the role of models in regulation, litigation, and policy development; explains ground water processes and describes specific applications for models; presents emerging technologies; and offers specific recommendations for better use of ground water science in policy formation.
In some coalbeds, naturally occurring water pressure holds methane-the main component of natural gas-fixed to coal surfaces and within the coal. In a coalbed methane (CBM) well, pumping water from the coalbeds lowers this pressure, facilitating the release of methane from the coal for extraction and use as an energy source. Water pumped from coalbeds during this process-CBM 'produced water'-is managed through some combination of treatment, disposal, storage, or use, subject to compliance with federal and state regulations. CBM produced water management can be challenging for regulatory agencies, CBM well operators, water treatment companies, policy makers, landowners, and the public because of differences in the quality and quantity of produced water; available infrastructure; costs to treat, store, and transport produced water; and states' legal consideration of water and produced water. Some states consider produced water as waste, whereas others consider it a beneficial byproduct of methane production. Thus, although current technologies allow CBM produced water to be treated to any desired water quality, the majority of CBM produced water is presently being disposed of at least cost rather than put to beneficial use. This book specifically examines the Powder River, San Juan, Raton, Piceance, and Uinta CBM basins in the states of Montana, Wyoming, Colorado, New Mexico, and Utah. The conclusions and recommendations identify gaps in data and information, potential beneficial uses of CBM produced water and associated costs, and challenges in the existing regulatory framework.
Compared to other large engineering projects, geologic repositories for high-level waste present distinctive challenges because: 1) they are first-of-a-kind, complex, and long-term projects that must actively manage hazardous materials for many decades: 2) they are expected to hold these hazardous materials passively safe for many millennia after repository closure; and 3) they are widely perceived to pose serious risks. As is the case for other complex projects, repository programs should proceed in stages. One Step at a Time focuses on a management approach called "adaptive staging" as a promising means to develop geologic repositories for high-level radioactive waste such as the proposed repository at Yucca Mountain, Nevada. Adaptive staging is a learn-as-you-go process that enables project managers to continuously reevaluate and adjust the program in response to new knowledge and stakeholder input. Advice is given on how to implement staging during the construction, operation, closure, and post-closure phases of a repository program.
Scientific understanding of fluid flow in rock fractures--a process underlying contemporary earth science problems from the search for petroleum to the controversy over nuclear waste storage--has grown significantly in the past 20 years. This volume presents a comprehensive report on the state of the field, with an interdisciplinary viewpoint, case studies of fracture sites, illustrations, conclusions, and research recommendations. The book addresses these questions: How can fractures that are significant hydraulic conductors be identified, located, and characterized? How do flow and transport occur in fracture systems? How can changes in fracture systems be predicted and controlled? Among other topics, the committee provides a geomechanical understanding of fracture formation, reviews methods for detecting subsurface fractures, and looks at the use of hydraulic and tracer tests to investigate fluid flow. The volume examines the state of conceptual and mathematical modeling, and it provides a useful framework for understanding the complexity of fracture changes that occur during fluid pumping and other engineering practices. With a practical and multidisciplinary outlook, this volume will be welcomed by geologists, petroleum geologists, geoengineers, geophysicists, hydrologists, researchers, educators and students in these fields, and public officials involved in geological projects.
This volume discusses the readiness of the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) facility near Carlsbad, New Mexico, to serve as a geological repository for transuranic radioactive waste. WIPP is located in a Permian-age bedded salt deposit 658 meters below the surface. The committee has long reviewed DOE's readiness efforts, now aimed at demonstrating compliance with U.S. Environmental Protection Agency regulations. Site characterization studies and performance assessment modeling are among the topics considered in this volume.
Across the United States, thousands of hazardous waste sites are contaminated with chemicals that prevent the underlying groundwater from meeting drinking water standards. These include Superfund sites and other facilities that handle and dispose of hazardous waste, active and inactive dry cleaners, and leaking underground storage tanks; many are at federal facilities such as military installations. While many sites have been closed over the past 30 years through cleanup programs run by the U.S. Department of Defense, the U.S. EPA, and other state and federal agencies, the remaining caseload is much more difficult to address because the nature of the contamination and subsurface conditions make it difficult to achieve drinking water standards in the affected groundwater. Alternatives for Managing the Nation's Complex Contaminated Groundwater Sites estimates that at least 126,000 sites across the U.S. still have contaminated groundwater, and their closure is expected to cost at least $110 billion to $127 billion. About 10 percent of these sites are considered "complex," meaning restoration is unlikely to be achieved in the next 50 to 100 years due to technological limitations. At sites where contaminant concentrations have plateaued at levels above cleanup goals despite active efforts, the report recommends evaluating whether the sites should transition to long-term management, where risks would be monitored and harmful exposures prevented, but at reduced costs.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.