From the days of biplanes and open cockpits, the air forces of the United States have relied on the mastery of technology. From design to operation, a project can stretch to 20 years and more, with continuous increases in cost. Much of the delay and cost growth afflicting modern United States Air Force (USAF) programs is rooted in the incorporation of advanced technology into major systems acquisition. Leaders in the Air Force responsible for science and technology and acquisition are trying to determine the optimal way to utilize existing policies, processes, and resources to properly document and execute pre-program of record technology development efforts, including opportunities to facilitate the rapid acquisition of revolutionary capabilities and the more deliberate acquisition of evolutionary capabilities. Evaluation of U.S. Air Force Preacquisition Technology Development responds to this need with an examination of the current state of Air Force technology development and the environment in which technology is acquired. The book considers best practices from both government and industry to distill appropriate recommendations that can be implemented within the USAF.
From the days of biplanes and open cockpits, the air forces of the United States have relied on the mastery of technology. From design to operation, a project can stretch to 20 years and more, with continuous increases in cost. Much of the delay and cost growth afflicting modern United States Air Force (USAF) programs is rooted in the incorporation of advanced technology into major systems acquisition. Leaders in the Air Force responsible for science and technology and acquisition are trying to determine the optimal way to utilize existing policies, processes, and resources to properly document and execute pre-program of record technology development efforts, including opportunities to facilitate the rapid acquisition of revolutionary capabilities and the more deliberate acquisition of evolutionary capabilities. Evaluation of U.S. Air Force Preacquisition Technology Development responds to this need with an examination of the current state of Air Force technology development and the environment in which technology is acquired. The book considers best practices from both government and industry to distill appropriate recommendations that can be implemented within the USAF.
The ability of the United States Air Force (USAF) to keep its aircraft operating at an acceptable operational tempo, in wartime and in peacetime, has been important to the Air Force since its inception. This is a much larger issue for the Air Force today, having effectively been at war for 20 years, with its aircraft becoming increasingly more expensive to operate and maintain and with military budgets certain to further decrease. The enormously complex Air Force weapon system sustainment enterprise is currently constrained on many sides by laws, policies, regulations and procedures, relationships, and organizational issues emanating from Congress, the Department of Defense (DoD), and the Air Force itself. Against the back-drop of these stark realities, the Air Force requested the National Research Council (NRC) of the National Academies, under the auspices of the Air Force Studies Board to conduct and in-depth assessment of current and future Air Force weapon system sustainment initiatives and recommended future courses of action for consideration by the Air Force. Examination of the U.S. Air Force's Aircraft Sustainment Needs in the Future and Its Strategy to Meet Those Needs addresses the following topics: Assess current sustainment investments, infrastructure, and processes for adequacy in sustaining aging legacy systems and their support equipment. Determine if any modifications in policy are required and, if so, identify them and make recommendations for changes in Air Force regulations, policies, and strategies to accomplish the sustainment goals of the Air Force. Determine if any modifications in technology efforts are required and, if so, identify them and make recommendations regarding the technology efforts that should be pursued because they could make positive impacts on the sustainment of the current and future systems and equipment of the Air Force. Determine if the Air Logistics Centers have the necessary resources (funding, manpower, skill sets, and technologies) and are equipped and organized to sustain legacy systems and equipment and the Air Force of tomorrow. Identify and make recommendations regarding incorporating sustainability into future aircraft designs.
During the past decade and a half, the National Research Council, through its Committee on National Statistics, has carried out a number of studies on the application of statistical methods to improve the testing and development of defense systems. These studies were intended to provide advice to the Department of Defense (DOD), which sponsored these studies. The previous studies have been concerned with the role of statistical methods in testing and evaluation, reliability practices, software methods, combining information, and evolutionary acquisition. Industrial Methods for the Effective Testing and Development of Defense Systems is the latest in a series of studies, and unlike earlier studies, this report identifies current engineering practices that have proved successful in industrial applications for system development and testing. This report explores how developmental and operational testing, modeling and simulation, and related techniques can improve the development and performance of defense systems, particularly techniques that have been shown to be effective in industrial applications and are likely to be useful in defense system development. In addition to the broad issues, the report identifies three specific topics for its focus: finding failure modes earlier, technology maturity, and use of all relevant information for operational assessments.
Lightweighting is a concept well known to structural designers and engineers in all applications areas, from laptops to bicycles to automobiles to buildings and airplanes. Reducing the weight of structures can provide many advantages, including increased energy efficiency, better design, improved usability, and better coupling with new, multifunctional features. While lightweighting is a challenge in commercial structures, the special demands of military vehicles for survivability, maneuverability and transportability significantly stress the already complex process. Application of Lightweighting Technology to Military Vehicles, Vessels, and Aircraft assesses the current state of lightweighting implementation in land, sea, and air vehicles and recommends ways to improve the use of lightweight materials and solutions. This book considers both lightweight materials and lightweight design; the availability of lightweight materials from domestic manufacturers; and the performance of lightweight materials and their manufacturing technologies. It also considers the "trade space"-that is, the effect that use of lightweight materials or technologies can have on the performance and function of all vehicle systems and components. This book also discusses manufacturing capabilities and affordable manufacturing technology to facilitate lightweighting. Application of Lightweighting Technology to Military Vehicles, Vessels, and Aircraft will be of interest to the military, manufacturers and designers of military equipment, and decision makers.
The Air Force (USAF) has continuously sought to improve the speed with which it develops new capabilities to accomplish its various missions in air, space, and cyberspace. Historically, innovation has been a key part of USAF strategy, and operating within an adversary's OODA loop (observe, orient, decide, act) is part of Air Force DNA. This includes the ability to deploy technological innovations faster than do our adversaries. The Air Force faces adversaries with the potential to operate within the USAF's OODA loop, and some of these adversaries are already deploying innovations faster than the USAF. The Role of Experimentation Campaigns in the Air Force Innovation Life Cycle examines the current state of innovation and experimentation in the Air Force and best practices in innovation and experimentation in industry and other government agencies. This report also explores organizational changes needed to eliminate the barriers that deter innovation and experimentation and makes recommendations for the successful implementation of robust innovation and experimentation by the Air Force.
The ability of U.S. military forces to field new weapons systems quickly and to contain their cost growth has declined significantly over the past few decades. There are many causes including increased complexity, funding instability, bureaucracy, and more diverse user demands, but a view that is gaining more acceptance is that better systems engineering (SE) could help shorten development time. To investigate this assertion in more detail, the US Air Force asked the NRC to examine the role that SE can play during the acquisition life cycle to address root causes of program failure especially during pre-milestone A and early program phases. This book presents an assessment of the relationship between SE and program outcome; an examination of the SE workforce; and an analysis of SE functions and guidelines. The latter includes a definition of the minimum set of SE processes that need to be accounted for during project development.
Since the mid-1940s, when Vannevar Bush and Theodore von Karman wrote Science, the Endless Frontier and Toward New Horizons, respectively, there has been a consensus that strong Department of Defense support of science and technology (S&T) is important to the security of the United States. During the Cold War, as it faced technologically capable adversaries whose forces potentially outnumbered U.S. forces, the United States relied on a strong defense S&T program to support the development of technologically superior weapons and systems that would enable it to prevail in the event of conflict. Since the end of the Cold War, the United States has relied on its technological superiority to maintain a military advantage while at the same time reducing the size of its forces. Over the past half-century, creating and maintaining a technologically superior military capability have become fundamental to U.S. national security strategy, and investment in S&T has become a basic component of the defense budget. In late 1998, Congress asked the Secretary of Defense to conduct a study, in cooperation with the National Research Council (NRC), on the S&T base of the U.S. Department of Defense (DoD). Congress was particularly concerned about areas of the S&T program related to air systems, space systems, and supporting information systems. Its concern was based on the Air Force's reduction of its S&T program from the largest of the three military service programs to the smallest. Congress also wanted to ensure that the Air Force maintained an appropriately sized S&T workforce. In late 1999, the Deputy Under Secretary of Defense for Science and Technology asked the NRC to conduct a study to explore these issues.
Under mandate of Section 253, Study and Report on Effectiveness of Air Force Science and Technology Program Changes, of the Fiscal Year 2002 National Defense Authorization Act, the U.S. Air Force contracted with the National Research Council (NRC) to conduct the present study. In response, the NRC established the Committee on Review of the Effectiveness of Air Force Science and Technology Program Changes-composed of academics, active and retired industry executives, former Air Force and Department of Defense (DoD) civilian executives, and retired general officers with acquisition and science and technology (S&T) backgrounds. The committee was to review the effectiveness of the Air Force S&T program and, in particular, the actions that the Air Force has taken to improve the management of the program in recent years in response to concerns voiced in numerous study reports and by Congress. The committee's principal charter was to assess whether, as a whole, the changes put in place by the Air Force since 1999 are sufficient to assure that adequate technology will be available to ensure U.S. military superiority. The committee conducted four open meetings to collect information from the Air Force and its Scientific Advisory Board (SAB), the U.S Navy, the U.S. Army, and DoD. A great many factors influence any judgment of the S&T program's sufficiency in supporting future warfighter needs; these factors include threat assessment, budget constraints, technology opportunities, workforce, and program content. Given the relatively short time available for this study and considering the detailed reviews conducted annually by the SAB, the technical content of the S&T program was necessarily beyond the committee's purview. Rather, the committee focused on S&T management, including areas that have been studied many times, in depth, by previous advisory groups. Besides addressing technical content, those prior studies and congressional concerns highlighted four overarching S&T issues: advocacy and visibility, planning, workforce, and investment levels. In response, the Air Force instituted changes in S&T management. The NRC is requested to conduct a study to determine how changes to the Air Force science and technology program implemented during the past two years affect the future capabilities of the Air Force. Effectiveness of Air Force Science and Technology Program Changes reviews and assess whether such changes as a whole are sufficient to ensure the following: A. That concerns about the management of the science and technology program that have been raised by the Congress, the Defense Science Board, the Air Force Scientific Advisory Board, and the Air Force Association have been adequately addressed. B. That appropriate and sufficient technology is available to ensure the military superiority of the United States and counter future high-risk threats. C. That the science and technology investments are balanced to meet near-, mid-, and long-term needs of the Air Force. D. That the Air Force organizational structure provides for a sufficiently senior level advocate of science and technology to ensure an ongoing, effective presence of the science and technology community during the budget and planning process. This report also assess the specific changes to the Air Force science and technology program as whether the biannual science and technology summits provide sufficient visibility into, and understanding and appreciation of, the value of the science and technology program to the senior level of Air Force budget and policy decision makers.
The development and application of technology has been an essential part of U.S. airpower, leading to a century of air supremacy. But that developmental path has rarely been straight, and it has never been smooth. Only the extraordinary efforts of exceptional leadership - in the Air Forces and the wider Department of Defense, in science and in industry - have made the triumphs of military airpower possible. Development Planning provides recommendations to improve development planning for near-term acquisition projects, concepts not quite ready for acquisition, corporate strategic plans, and training of acquisition personnel. This report reviews past uses of development planning by the Air Force, and offers an organizational construct that will help the Air Force across its core functions. Developmental planning, used properly by experienced practitioners, can provide the Air Force leadership with a tool to answer the critical question, Over the next 20 years in 5-year increments, what capability gaps will the Air Force have that must be filled? Development planning will also provide for development of the workforce skills needed to think strategically and to defectively define and close the capability gap. This report describes what development planning could be and should be for the Air Force.
The Air Force requires technical skills and expertise across the entire range of activities and processes associated with the development, fielding, and employment of air, space, and cyber operational capabilities. The growing complexity of both traditional and emerging missions is placing new demands on education, training, career development, system acquisition, platform sustainment, and development of operational systems. While in the past the Air Force's technologically intensive mission has been highly attractive to individuals educated in science, technology, engineering, and mathematics (STEM) disciplines, force reductions, ongoing military operations, and budget pressures are creating new challenges for attracting and managing personnel with the needed technical skills. Assessments of recent development and acquisition process failures have identified a loss of technical competence within the Air Force (that is, in house or organic competence, as opposed to contractor support) as an underlying problem. These challenges come at a time of increased competition for technical graduates who are U.S. citizens, an aging industry and government workforce, and consolidations of the industrial base that supports military systems. In response to a request from the Deputy Assistant Secretary of the Air Force for Science, Technology, and Engineering, the National Research Council conducted five fact-finding meetings at which senior Air Force commanders in the science and engineering, acquisition, test, operations, and logistics domains provided assessments of the adequacy of the current workforce in terms of quality and quantity.
Since the mid-1940s, when Vannevar Bush and Theodore von Karman wrote Science, the Endless Frontier and Toward New Horizons, respectively, there has been a consensus that strong Department of Defense support of science and technology (S&T) is important to the security of the United States. During the Cold War, as it faced technologically capable adversaries whose forces potentially outnumbered U.S. forces, the United States relied on a strong defense S&T program to support the development of technologically superior weapons and systems that would enable it to prevail in the event of conflict. Since the end of the Cold War, the United States has relied on its technological superiority to maintain a military advantage while at the same time reducing the size of its forces. Over the past half-century, creating and maintaining a technologically superior military capability have become fundamental to U.S. national security strategy, and investment in S&T has become a basic component of the defense budget. In late 1998, Congress asked the Secretary of Defense to conduct a study, in cooperation with the National Research Council (NRC), on the S&T base of the U.S. Department of Defense (DoD). Congress was particularly concerned about areas of the S&T program related to air systems, space systems, and supporting information systems. Its concern was based on the Air Force's reduction of its S&T program from the largest of the three military service programs to the smallest. Congress also wanted to ensure that the Air Force maintained an appropriately sized S&T workforce. In late 1999, the Deputy Under Secretary of Defense for Science and Technology asked the NRC to conduct a study to explore these issues.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.