The Global Nuclear Detection Architecture (GNDA) is described as a worldwide network of sensors, telecommunications, and personnel, with the supporting information exchanges, programs, and protocols that serve to detect, analyze, and report on nuclear and radiological materials that are out of regulatory control. The Domestic Nuclear Detection Office (DNDO), an office within the Department of Homeland Security (DHS), coordinates the development of the GNDA with its federal partners. Performance Metrics for the Global Nuclear Detection Architecture considers how to develop performance measures and quantitative metrics that can be used to evaluate the overall effectiveness and report on progress toward meeting the goals of the GNDA. According to this report, two critical components are needed to evaluate the effectiveness of the GNDA: a new strategic plan with outcome-based metrics and an analysis framework to enable assessment of outcome-based metrics. The GNDA is a complex system of systems meant to deter and detect attempts to unlawfully transport radiological or nuclear material. The recommendations of Performance Metrics for the Performance Metrics for the Global Nuclear Detection Architecture may be used to improve the GNDA strategic plan and the reporting of progress toward meeting its goals during subsequent review cycles.
The Global Nuclear Detection Architecture (GNDA) is described as a worldwide network of sensors, telecommunications, and personnel, with the supporting information exchanges, programs, and protocols that serve to detect, analyze, and report on nuclear and radiological materials that are out of regulatory control. The Domestic Nuclear Detection Office (DNDO), an office within the Department of Homeland Security (DHS), coordinates the development of the GNDA with its federal partners. Performance Metrics for the Global Nuclear Detection Architecture considers how to develop performance measures and quantitative metrics that can be used to evaluate the overall effectiveness and report on progress toward meeting the goals of the GNDA. According to this report, two critical components are needed to evaluate the effectiveness of the GNDA: a new strategic plan with outcome-based metrics and an analysis framework to enable assessment of outcome-based metrics. The GNDA is a complex system of systems meant to deter and detect attempts to unlawfully transport radiological or nuclear material. The recommendations of Performance Metrics for the Performance Metrics for the Global Nuclear Detection Architecture may be used to improve the GNDA strategic plan and the reporting of progress toward meeting its goals during subsequent review cycles.
In 2018, the National Academies of Sciences, Engineering, and Medicine issued an Interim Report evaluating the general viability of the U.S. Department of Energy's National Nuclear Security Administration's (DOE-NNSA's) conceptual plans for disposing of 34 metric tons (MT) of surplus plutonium in the Waste Isolation Pilot Plant (WIPP), a deep geologic repository near Carlsbad, New Mexico. It provided a preliminary assessment of the general viability of DOE-NNSA's conceptual plans, focused on some of the barriers to their implementation. This final report addresses the remaining issues and echoes the recommendations from the interim study.
Disposal of Surplus Plutonium at the Waste Isolation Pilot Plant: Interim Report evaluates the general viability of the U.S. Department of Energy's National Nuclear Security Administration's (DOE-NNSA's) conceptual plans for disposing of 34 metric tons (MT) of surplus plutonium in the Waste Isolation Pilot Plant (WIPP), a deep geologic repository near Carlsbad, New Mexico. This report evaluates DOE-NNSA's plans to ship, receive, and emplace surplus plutonium in WIPP and its understanding of the impacts of these plans on WIPP and WIPP-bound waste streams. This report, the first of two to be issued during this study, provides a preliminary assessment of the general viability of DOE-NNSA's conceptual plans, focusing on some of the barriers to their implementation.
Maintaining the capabilities of the nuclear weapons stockpile and performing the annual assessment for the stockpile's certification involves a wide range of processes, technologies, and expertise. An important and valuable framework helping to link those components is the quantification of margins and uncertainties (QMU) methodology. In this book, the National Research Council evaluates: how the national security labs were using QMU, including any significant differences among the three labs its use in the annual assessment whether the applications of QMU to assess the proposed reliable replacement warhead (RRW) could reduce the likelihood of resuming underground nuclear testing This book presents an assessment of each of these issues and includes findings and recommendations to help guide laboratory and NNSA implementation and development of the QMU framework. It also serves as a guide for congressional oversight of those activities.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.