Book's by Committee on Enhancing the Robustness and Resilience of Future Electrical Transmission and Distribution in the United States to Terrorist Attack
The electric power delivery system that carries electricity from large central generators to customers could be severely damaged by a small number of well-informed attackers. The system is inherently vulnerable because transmission lines may span hundreds of miles, and many key facilities are unguarded. This vulnerability is exacerbated by the fact that the power grid, most of which was originally designed to meet the needs of individual vertically integrated utilities, is being used to move power between regions to support the needs of competitive markets for power generation. Primarily because of ambiguities introduced as a result of recent restricting the of the industry and cost pressures from consumers and regulators, investment to strengthen and upgrade the grid has lagged, with the result that many parts of the bulk high-voltage system are heavily stressed. Electric systems are not designed to withstand or quickly recover from damage inflicted simultaneously on multiple components. Such an attack could be carried out by knowledgeable attackers with little risk of detection or interdiction. Further well-planned and coordinated attacks by terrorists could leave the electric power system in a large region of the country at least partially disabled for a very long time. Although there are many examples of terrorist and military attacks on power systems elsewhere in the world, at the time of this study international terrorists have shown limited interest in attacking the U.S. power grid. However, that should not be a basis for complacency. Because all parts of the economy, as well as human health and welfare, depend on electricity, the results could be devastating. Terrorism and the Electric Power Delivery System focuses on measures that could make the power delivery system less vulnerable to attacks, restore power faster after an attack, and make critical services less vulnerable while the delivery of conventional electric power has been disrupted.
The Resilience of the Electric Power Delivery System in Response to Terrorism and Natural Disasters is the summary of a workshop convened in February 2013 as a follow-up to the release of the National Research Council report Terrorism and the Electric Power Delivery System. That report had been written in 2007 for the Department of Homeland Security, but publication was delayed because of security concerns. While most of the committee's findings were still relevant, many developments affecting vulnerability had occurred in the interval. The 2013 workshop was a discussion of the committee\'s results, what had changed in recent years, and how lessons learned about the grid's resilience to terrorism could be applied to other threats to the grid resulting from natural disasters. The purpose was not to translate the entire report into the present, but to focus on key issues relevant to making the grid sufficiently robust that it could handle inevitable failures without disastrous impact. The workshop focused on five key areas: physical vulnerabilities of the grid; cybersecurity; mitigation and response to outages; community resilience and the provision of critical services; and future technologies and policies that could enhance the resilience of the electric power delivery system. The electric power transmission and distribution system (the grid) is an extraordinarily complex network of wires, transformers, and associated equipment and control software designed to transmit electricity from where it is generated, usually in centralized power plants, to commercial, residential, and industrial users. Because the U.S. infrastructure has become increasingly dependent on electricity, vulnerabilities in the grid have the potential to cascade well beyond whether the lights turn on, impacting among other basic services such as the fueling infrastructure, the economic system, and emergency services. The Resilience of the Electric Power Delivery System in Response to Terrorism and Natural Disasters discusses physical vulnerabilities and the cybersecurity of the grid, ways in which communities respond to widespread outages and how to minimize these impacts, the grid of tomorrow, and how resilience can be encouraged and built into the grid in the future.
In January-February 2005, the National Academies Committee on Counterterrorism Challenges for Russia and the United States and the Russian Academy of Sciences Standing Committee on Counterterrorism held a workshop on urban terrorism in Washington, D.C. Prior to the workshop, three working groups convened to focus on the topics of energy systems vulnerabilities, transportation systems vulnerabilities, and cyberterrorism issues. The working groups met with local experts and first responders, prepared reports, and presented their findings at the workshop. Other workshop papers focused on various organizations' integrated response to acts of urban terrorism, recent acts of terrorism, radiological terrorism, biological terrorism, cyberterrorism, and the roots of terrorism.
For the people of the United States, the 20th century was one of unprecedented population growth, economic development, and improved quality of life. The critical infrastructure systems-water, wastewater, power, transportation, and telecommunications-built in the 20th century have become so much a part of modern life that they are taken for granted. By 2030, 60 million more Americans will expect these systems to deliver essential services. Large segments and components of the nation's critical infrastructure systems are now 50 to 100 years old, and their performance and condition are deteriorating. Improvements are clearly necessary. However, approaching infrastructure renewal by continuing to use the same processes, practices, technologies, and materials that were developed in the 20th century will likely yield the same results: increasing instances of service disruptions, higher operating and repair costs, and the possibility of catastrophic, cascading failures. If the nation is to meet some of the important challenges of the 21st century, a new paradigm for the renewal of critical infrastructure systems is needed. This book discusses the essential components of this new paradigm, and outlines a framework to ensure that ongoing activities, knowledge, and technologies can be aligned and leveraged to help meet multiple national objectives.
Electricity, supplied reliably and affordably, is foundational to the U.S. economy and is utterly indispensable to modern society. However, emissions resulting from many forms of electricity generation create environmental risks that could have significant negative economic, security, and human health consequences. Large-scale installation of cleaner power generation has been generally hampered because greener technologies are more expensive than the technologies that currently produce most of our power. Rather than trade affordability and reliability for low emissions, is there a way to balance all three? The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies considers how to speed up innovations that would dramatically improve the performance and lower the cost of currently available technologies while also developing new advanced cleaner energy technologies. According to this report, there is an opportunity for the United States to continue to lead in the pursuit of increasingly clean, more efficient electricity through innovation in advanced technologies. The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies makes the case that America's advantagesâ€"world-class universities and national laboratories, a vibrant private sector, and innovative states, cities, and regions that are free to experiment with a variety of public policy approachesâ€"position the United States to create and lead a new clean energy revolution. This study focuses on five paths to accelerate the market adoption of increasing clean energy and efficiency technologies: (1) expanding the portfolio of cleaner energy technology options; (2) leveraging the advantages of energy efficiency; (3) facilitating the development of increasing clean technologies, including renewables, nuclear, and cleaner fossil; (4) improving the existing technologies, systems, and infrastructure; and (5) leveling the playing field for cleaner energy technologies. The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies is a call for leadership to transform the United States energy sector in order to both mitigate the risks of greenhouse gas and other pollutants and to spur future economic growth. This study's focus on science, technology, and economic policy makes it a valuable resource to guide support that produces innovation to meet energy challenges now and for the future.
The electric power delivery system that carries electricity from large central generators to customers could be severely damaged by a small number of well-informed attackers. The system is inherently vulnerable because transmission lines may span hundreds of miles, and many key facilities are unguarded. This vulnerability is exacerbated by the fact that the power grid, most of which was originally designed to meet the needs of individual vertically integrated utilities, is being used to move power between regions to support the needs of competitive markets for power generation. Primarily because of ambiguities introduced as a result of recent restricting the of the industry and cost pressures from consumers and regulators, investment to strengthen and upgrade the grid has lagged, with the result that many parts of the bulk high-voltage system are heavily stressed. Electric systems are not designed to withstand or quickly recover from damage inflicted simultaneously on multiple components. Such an attack could be carried out by knowledgeable attackers with little risk of detection or interdiction. Further well-planned and coordinated attacks by terrorists could leave the electric power system in a large region of the country at least partially disabled for a very long time. Although there are many examples of terrorist and military attacks on power systems elsewhere in the world, at the time of this study international terrorists have shown limited interest in attacking the U.S. power grid. However, that should not be a basis for complacency. Because all parts of the economy, as well as human health and welfare, depend on electricity, the results could be devastating. Terrorism and the Electric Power Delivery System focuses on measures that could make the power delivery system less vulnerable to attacks, restore power faster after an attack, and make critical services less vulnerable while the delivery of conventional electric power has been disrupted.
The Resilience of the Electric Power Delivery System in Response to Terrorism and Natural Disasters is the summary of a workshop convened in February 2013 as a follow-up to the release of the National Research Council report Terrorism and the Electric Power Delivery System. That report had been written in 2007 for the Department of Homeland Security, but publication was delayed because of security concerns. While most of the committee's findings were still relevant, many developments affecting vulnerability had occurred in the interval. The 2013 workshop was a discussion of the committee\'s results, what had changed in recent years, and how lessons learned about the grid's resilience to terrorism could be applied to other threats to the grid resulting from natural disasters. The purpose was not to translate the entire report into the present, but to focus on key issues relevant to making the grid sufficiently robust that it could handle inevitable failures without disastrous impact. The workshop focused on five key areas: physical vulnerabilities of the grid; cybersecurity; mitigation and response to outages; community resilience and the provision of critical services; and future technologies and policies that could enhance the resilience of the electric power delivery system. The electric power transmission and distribution system (the grid) is an extraordinarily complex network of wires, transformers, and associated equipment and control software designed to transmit electricity from where it is generated, usually in centralized power plants, to commercial, residential, and industrial users. Because the U.S. infrastructure has become increasingly dependent on electricity, vulnerabilities in the grid have the potential to cascade well beyond whether the lights turn on, impacting among other basic services such as the fueling infrastructure, the economic system, and emergency services. The Resilience of the Electric Power Delivery System in Response to Terrorism and Natural Disasters discusses physical vulnerabilities and the cybersecurity of the grid, ways in which communities respond to widespread outages and how to minimize these impacts, the grid of tomorrow, and how resilience can be encouraged and built into the grid in the future.
Concerned with the vulnerability of U.S. civilian and military personnel to terrorist bombing attacks, the U.S. Congress directed the Department of Defense to undertake a comprehensive research and testing program aimed at protecting people in buildings from such attacks. The Blast Mitigation for Structures Program (BMSP) was initiated in 1997 and has produced a large volume of experimental and analytical data that will permit the design of new, more robust buildings as well as the development of methods to retrofit a large number of vulnerable existing structures. This report reviews the BMSP program and investigates a process that would use existing institutional infrastructures (i.e., building code and standards-writing organizations, professional and technical organizations, universities, and research centers) to disseminate knowledge.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.