In each year between 1994 and 1996, more than 7,000 individuals received a Ph.D. in life-science, and the number of graduates is rising sharply. If present trends continue, about half of those graduates will have found permanent positions as independent researchers within ten years after graduation. These statisticsâ€"and the labor market situation they reflectâ€"can be viewed either positively or negatively depending on whether one is a young scientist seeking a career or an established investigator whose productivity depends on the labor provided by an abundant number of graduate students. This book examines the data concerning the production of doctorates in life-science and the changes in the kinds of positions graduates have obtained. It discusses the impact of those changes and suggests ways to deal with the challenges of supply versus demand for life-science Ph.D. graduates. Trends in the Early Careers of Life Scientists will serve as an information resource for young scientists deciding on career paths and as a basis for discussion by educators and policymakers as they examine the current system of education linked to research and decide if changes in that system are needed.
A Strategy for Assessing Science offers strategic advice on the perennial issue of assessing rates of progress in different scientific fields. It considers available knowledge about how science makes progress and examines a range of decision-making strategies for addressing key science policy concerns. These include avoiding undue conservatism that may arise from the influence of established disciplines; achieving rational, high-quality, accountable, and transparent decision processes; and establishing an appropriate balance of influence between scientific communities and agency science managers. A Strategy for Assessing Science identifies principles for setting priorities and specific recommendations for the context of behavioral and social research on aging.
A rising median age at which PhD's receive their first research grant from the National Institutes of Health (NIH) is among the factors forcing academic biomedical researchers to spend longer periods of time before they can set their own research directions and establish there independence. The fear that promising prospective scientists will choose other career paths has raised concerns about the future of biomedical research in the United States. At the request of NIH, the National Academies conducted a study on ways to address these issues. The report recommends that NIH make fostering independence of biomedical researchers an agencywide goal, and that it take steps to provide postdocs and early-career investigators with more financial support for their own research, improve postdoc mentoring and establish programs for new investigators and staff scientists among other mechanisms.
Although women have made important inroads in science and engineering since the early 1970s, their progress in these fields has stalled over the past several years. This study looks at women in science and engineering careers in the 1970s and 1980s, documenting differences in career outcomes between men and women and between women of different races and ethnic backgrounds. The panel presents what is known about the following questions and explores their policy implications: In what sectors are female Ph.D.s employed? What salary disparities exist between men and women in these fields? How is marital status associated with career attainment? Does it help a career to have a postdoctoral appointment? How well are female scientists and engineers represented in management? Within the broader context of education and the labor market, the book provides detailed comparisons between men and women Ph.D.s in a number of measures: financial support for education, academic rank achieved, salary, and others. The study covers engineering; the mathematical, physical, life, and social and behavioral sciences; medical school faculty; and recipients of National Institutes of Health grants. Findings and recommendations in this volume will be of interest to practitioners, faculty, and students in science and engineering as well as education administrators, employers, and researchers in these fields.
Since the end of the Second World War, the United States has developed the world's preeminent system for biomedical research, one that has given rise to revolutionary medical advances as well as a dynamic and innovative business sector generating high-quality jobs and powering economic output and exports for the U.S. economy. However, there is a growing concern that the biomedical research enterprise is beset by several core challenges that undercut its vitality, promise, and productivity and that could diminish its critical role in the nation's health and innovation in the biomedical industry. Among the most salient of these challenges is the gulf between the burgeoning number of scientists qualified to participate in this system as academic researchers and the elusive opportunities to establish long-term research careers in academia. The patchwork of measures to address the challenges facing young scientists that has emerged over the years has allowed the U.S. biomedical enterprise to continue to make significant scientific and medical advances. These measures, however, have not resolved the structural vulnerabilities in the system, and in some cases come at a great opportunity cost for young scientists. These unresolved issues could diminish the nation's ability to recruit the best minds from all sectors of the U.S. population to careers in biomedical research and raise concerns about a system that may favor increasingly conservative research proposals over high-risk, innovative ideas. The Next Generation of Biomedical and Behavioral Sciences Researchers: Breaking Through evaluates the factors that influence transitions into independent research careers in the biomedical and behavioral sciences and offers recommendations to improve those transitions. These recommendations chart a path to a biomedical research enterprise that is competitive, rigorous, fair, dynamic, and can attract the best minds from across the country.
The National Research Council (NRC) has undertaken a three-phase project to explore the possibility of a program to attract science, mathematics and engineering PhDs to careers in K-12 education. The first phase of the project surveyed the interests of recent PhDs in science and mathematics in pursuing careers in secondary education. Analysis of the Phase I data suggests that a significant percentage of PhDs might be interested in pursuing careers in secondary education under some circumstances. This report from the second phase of the project presents a proposal for a national demonstration program to determine how one might prepare PhDs to be productive members of the K-12 education community. The proposed program is designed to help meet the needs of the nation's schools, while providing further career opportunities for recent PhDs in science, mathematics and engineering.
The Air Force requires technical skills and expertise across the entire range of activities and processes associated with the development, fielding, and employment of air, space, and cyber operational capabilities. The growing complexity of both traditional and emerging missions is placing new demands on education, training, career development, system acquisition, platform sustainment, and development of operational systems. While in the past the Air Force's technologically intensive mission has been highly attractive to individuals educated in science, technology, engineering, and mathematics (STEM) disciplines, force reductions, ongoing military operations, and budget pressures are creating new challenges for attracting and managing personnel with the needed technical skills. Assessments of recent development and acquisition process failures have identified a loss of technical competence within the Air Force (that is, in house or organic competence, as opposed to contractor support) as an underlying problem. These challenges come at a time of increased competition for technical graduates who are U.S. citizens, an aging industry and government workforce, and consolidations of the industrial base that supports military systems. In response to a request from the Deputy Assistant Secretary of the Air Force for Science, Technology, and Engineering, the National Research Council conducted five fact-finding meetings at which senior Air Force commanders in the science and engineering, acquisition, test, operations, and logistics domains provided assessments of the adequacy of the current workforce in terms of quality and quantity.
The market for high-skilled workers is becoming increasingly global, as are the markets for knowledge and ideas. While high-skilled immigrants in the United States represent a much smaller proportion of the workforce than they do in countries such as Australia, Canada, and the United Kingdom, these immigrants have an important role in spurring innovation and economic growth in all countries and filling shortages in the domestic labor supply. This report summarizes the proceedings of a Fall 2014 workshop that focused on how immigration policy can be used to attract and retain foreign talent. Participants compared policies on encouraging migration and retention of skilled workers, attracting qualified foreign students and retaining them post-graduation, and input by states or provinces in immigration policies to add flexibility in countries with regional employment differences, among other topics. They also discussed how immigration policies have changed over time in response to undesired labor market outcomes and whether there was sufficient data to measure those outcomes.
We live in a changing world with multiple and evolving threats to national security, including terrorism, asymmetrical warfare (conflicts between agents with different military powers or tactics), and social unrest. Visually depicting and assessing these threats using imagery and other geographically-referenced information is the mission of the National Geospatial-Intelligence Agency (NGA). As the nature of the threat evolves, so do the tools, knowledge, and skills needed to respond. The challenge for NGA is to maintain a workforce that can deal with evolving threats to national security, ongoing scientific and technological advances, and changing skills and expectations of workers. Future U.S. Workforce for Geospatial Intelligence assesses the supply of expertise in 10 geospatial intelligence (GEOINT) fields, including 5 traditional areas (geodesy and geophysics, photogrammetry, remote sensing, cartographic science, and geographic information systems and geospatial analysis) and 5 emerging areas that could improve geospatial intelligence (GEOINT fusion, crowdsourcing, human geography, visual analytics, and forecasting). The report also identifies gaps in expertise relative to NGA's needs and suggests ways to ensure an adequate supply of geospatial intelligence expertise over the next 20 years.
In response to a Congressional mandate, the National Research Council conducted a review of the SBIR program at the five federal agencies with SBIR programs with budgets in excess of $100 million (DOD, NIH, NASA, DOE, and NSF). The project was designed to answer questions of program operation and effectiveness, including the quality of the research projects being conducted under the SBIR program, the commercialization of the research, and the program's contribution to accomplishing agency missions. This report describes the proposed methodology for the project, identifying how the following tasks will be carried out: 1) collecting and analyzing agency databases and studies; 2) surveying firms and agencies; 3) conducting case studies organized around a common template; and 4) reviewing and analyzing survey and case study results and program accomplishments. Given the heterogeneity of goals and procedures across the five agencies involved, a broad spectrum of evaluative approaches is recommended.
In each year between 1994 and 1996, more than 7,000 individuals received a Ph.D. in life-science, and the number of graduates is rising sharply. If present trends continue, about half of those graduates will have found permanent positions as independent researchers within ten years after graduation. These statisticsâ€"and the labor market situation they reflectâ€"can be viewed either positively or negatively depending on whether one is a young scientist seeking a career or an established investigator whose productivity depends on the labor provided by an abundant number of graduate students. This book examines the data concerning the production of doctorates in life-science and the changes in the kinds of positions graduates have obtained. It discusses the impact of those changes and suggests ways to deal with the challenges of supply versus demand for life-science Ph.D. graduates. Trends in the Early Careers of Life Scientists will serve as an information resource for young scientists deciding on career paths and as a basis for discussion by educators and policymakers as they examine the current system of education linked to research and decide if changes in that system are needed.
In each year between 1994 and 1996, more than 7,000 individuals received a Ph.D. in life-science, and the number of graduates is rising sharply. If present trends continue, about half of those graduates will have found permanent positions as independent researchers within ten years after graduation. These statisticsâ€"and the labor market situation they reflectâ€"can be viewed either positively or negatively depending on whether one is a young scientist seeking a career or an established investigator whose productivity depends on the labor provided by an abundant number of graduate students. This book examines the data concerning the production of doctorates in life-science and the changes in the kinds of positions graduates have obtained. It discusses the impact of those changes and suggests ways to deal with the challenges of supply versus demand for life-science Ph.D. graduates. Trends in the Early Careers of Life Scientists will serve as an information resource for young scientists deciding on career paths and as a basis for discussion by educators and policymakers as they examine the current system of education linked to research and decide if changes in that system are needed.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.