Beginning with the Manhattan Project and continuing through the Cold War, the United States government constructed and operated a massive industrial complex to produce and test nuclear weapons and related technologies. When the Cold War ended, most of this complex was shut down permanently or placed on standby, and the United States government began a costly, long-term effort to clean up the materials, wastes, and environmental contamination resulting from its nuclear materials production. In 1989, Congress created the Office of Environmental Management (EM) within the Department of Energy (DOE) to manage this cleanup effort. Although EM has already made substantial progress, the scope of EM's future cleanup work is enormous. Advice on the Department of Energy's Cleanup Technology Roadmap: Gaps and Bridges provides advice to support the development of a cleanup technology roadmap for EM. The book identifies existing technology gaps and their priorities, strategic opportunities to leverage needed research and development programs with other organizations, needed core capabilities, and infrastructure at national laboratories and EM sites that should be maintained, all of which are necessary to accomplish EM's mission.
Beginning with the Manhattan Project and continuing through the Cold War, the United States government constructed and operated a massive industrial complex to produce and test nuclear weapons and related technologies. When the Cold War ended, most of this complex was shut down permanently or placed on standby, and the United States government began a costly, long-term effort to clean up the materials, wastes, and environmental contamination resulting from its nuclear materials production. In 1989, Congress created the Office of Environmental Management (EM) within the Department of Energy (DOE) to manage this cleanup effort. Although EM has already made substantial progress, the scope of EM's future cleanup work is enormous. Advice on the Department of Energy's Cleanup Technology Roadmap: Gaps and Bridges provides advice to support the development of a cleanup technology roadmap for EM. The book identifies existing technology gaps and their priorities, strategic opportunities to leverage needed research and development programs with other organizations, needed core capabilities, and infrastructure at national laboratories and EM sites that should be maintained, all of which are necessary to accomplish EM's mission.
Uranium mining in the Commonwealth of Virginia has been prohibited since 1982 by a state moratorium, although approval for restricted uranium exploration in the state was granted in 2007. Uranium Mining in Virginia examines the scientific, technical, environmental, human health and safety, and regulatory aspects of uranium mining, milling, and processing as they relate to the Commonwealth of Virginia for the purpose of assisting the Commonwealth to determine whether uranium mining, milling, and processing can be undertaken in a manner that safeguards the environment, natural and historic resources, agricultural lands, and the health and well-being of its citizens. According to this report, if Virginia lifts its moratorium, there are "steep hurdles to be surmounted" before mining and processing could take place within a regulatory setting that appropriately protects workers, the public, and the environment, especially given that the state has no experience regulating mining and processing of the radioactive element. The authoring committee was not asked to recommend whether uranium mining should be permitted, or to consider the potential benefits to the state were uranium mining to be pursued. It also was not asked to compare the relative risks of uranium mining to the mining of other fuels such as coal. This book will be of interest to decision makers at the state and local level, the energy industry, and concerned citizens.
NASA's Office of the Chief Technologist (OCT) has begun to rebuild the advanced space technology program in the agency with plans laid out in 14 draft technology roadmaps. It has been years since NASA has had a vigorous, broad-based program in advanced space technology development and its technology base has been largely depleted. However, success in executing future NASA space missions will depend on advanced technology developments that should already be underway. Reaching out to involve the external technical community, the National Research Council (NRC) considered the 14 draft technology roadmaps prepared by OCT and ranked the top technical challenges and highest priority technologies that NASA should emphasize in the next 5 years. This report provides specific guidance and recommendations on how the effectiveness of the technology development program managed by OCT can be enhanced in the face of scarce resources.
The Science and Technology Committee concludes that the Government is too complacent about the UK's nuclear research and development (R&D) capabilities, and associated expertise, which will be lost unless there is a fundamental change in the Government's approach. The Committee's key recommendations include: the development of a long-term strategy for nuclear energy looking beyond 2025, outlining support for R&D through an R&D Roadmap and for the commercial exploitation of the UK's current strengths in nuclear research; the establishment of a Nuclear R&D Board, made up of industry, academic and government partners, to develop and implement the R&D roadmap and help to improve the co-ordination of R&D activities to protect vulnerable areas of research and close gaps in capabilities. Many of the UK's experts in R&D on nuclear energy are nearing retirement age, and a lack of investment over the last two decades means that the UK is now in danger of being in a position where it will be unable to ensure a safe and secure supply of nuclear energy up to 2050. The Government must take steps now to ensure that there is a new generation of experts, together with R&D, on which the nuclear industry, Government and the regulator rely.
The Department of Energy's Office of Environmental Management (DOE-EM) is responsible for cleaning up radioactive waste and environmental contamination resulting from five decades of nuclear weapons production and testing. A major focus of this program involves the retrieval, processing, and immobilization of waste into stable, solid waste forms for disposal. Waste Forms Technology and Performance, a report requested by DOE-EM, examines requirements for waste form technology and performance in the cleanup program. The report provides information to DOE-EM to support improvements in methods for processing waste and selecting and fabricating waste forms. Waste Forms Technology and Performance places particular emphasis on processing technologies for high-level radioactive waste, DOE's most expensive and arguably most difficult cleanup challenge. The report's key messages are presented in ten findings and one recommendation.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.