As the nation's economic activities, security concerns, and stewardship of natural resources become increasingly complex and globally interrelated, they become ever more sensitive to adverse impacts from weather, climate, and other natural phenomena. For several decades, forecasts with lead times of a few days for weather and other environmental phenomena have yielded valuable information to improve decision-making across all sectors of society. Developing the capability to forecast environmental conditions and disruptive events several weeks and months in advance could dramatically increase the value and benefit of environmental predictions, saving lives, protecting property, increasing economic vitality, protecting the environment, and informing policy choices. Over the past decade, the ability to forecast weather and climate conditions on subseasonal to seasonal (S2S) timescales, i.e., two to fifty-two weeks in advance, has improved substantially. Although significant progress has been made, much work remains to make S2S predictions skillful enough, as well as optimally tailored and communicated, to enable widespread use. Next Generation Earth System Predictions presents a ten-year U.S. research agenda that increases the nation's S2S research and modeling capability, advances S2S forecasting, and aids in decision making at medium and extended lead times.
As the nation's economic activities, security concerns, and stewardship of natural resources become increasingly complex and globally interrelated, they become ever more sensitive to adverse impacts from weather, climate, and other natural phenomena. For several decades, forecasts with lead times of a few days for weather and other environmental phenomena have yielded valuable information to improve decision-making across all sectors of society. Developing the capability to forecast environmental conditions and disruptive events several weeks and months in advance could dramatically increase the value and benefit of environmental predictions, saving lives, protecting property, increasing economic vitality, protecting the environment, and informing policy choices. Over the past decade, the ability to forecast weather and climate conditions on subseasonal to seasonal (S2S) timescales, i.e., two to fifty-two weeks in advance, has improved substantially. Although significant progress has been made, much work remains to make S2S predictions skillful enough, as well as optimally tailored and communicated, to enable widespread use. Next Generation Earth System Predictions presents a ten-year U.S. research agenda that increases the nation's S2S research and modeling capability, advances S2S forecasting, and aids in decision making at medium and extended lead times.
This report is intended to promote a dialogue between the scientific community and the government officials who will lead our nation in the coming years on global change research. The first section of the report is a brief description of the challenges and proposed responses needed from the highest levels of the government and the second provides more detailed discussion and is directed to agency-level issues and responses. The last section is a detailed bibliography that lists many of the specific reports on which the views outlined here are ultimately based.
Our ability to observe and forecast severe weather events has improved markedly over the past few decades. Forecasts of snow and ice storms, hurricanes and storm surge, extreme heat, and other severe weather events are made with greater accuracy, geographic specificity, and lead time to allow people and communities to take appropriate protective measures. Yet hazardous weather continues to cause loss of life and result in other preventable social costs. There is growing recognition that a host of social and behavioral factors affect how we prepare for, observe, predict, respond to, and are impacted by weather hazards. For example, an individual's response to a severe weather event may depend on their understanding of the forecast, prior experience with severe weather, concerns about their other family members or property, their capacity to take the recommended protective actions, and numerous other factors. Indeed, it is these factors that can determine whether or not a potential hazard becomes an actual disaster. Thus, it is essential to bring to bear expertise in the social and behavioral sciences (SBS)â€"including disciplines such as anthropology, communication, demography, economics, geography, political science, psychology, and sociologyâ€"to understand how people's knowledge, experiences, perceptions, and attitudes shape their responses to weather risks and to understand how human cognitive and social dynamics affect the forecast process itself. Integrating Social and Behavioral Sciences Within the Weather Enterprise explores and provides guidance on the challenges of integrating social and behavioral sciences within the weather enterprise. It assesses current SBS activities, describes the potential value of improved integration of SBS and barriers that impede this integration, develops a research agenda, and identifies infrastructural and institutional arrangements for successfully pursuing SBS-weather research and the transfer of relevant findings to operational settings.
During the 1980s and 1990s, the National Weather Service (NWS) undertook a major program called the Modernization and Associated Restructuring (MAR). The MAR was officially completed in 2000. No comprehensive assessment of the execution of the MAR plan, or comparison of the promised benefits of the MAR to its actual impact, had ever been conducted. Therefore, Congress asked the National Academy of Sciences to conduct an end-to-end assessment. That report, The National Weather Service Modernization and Associated Restructuring: A Retrospective Assessment, concluded that the MAR was a success. Now, twelve years after the official completion of the MAR, the challenges faced by the NWS are no less important than those of the pre-MAR era. The three key challenges are: 1) Keeping Pace with accelerating scientific and technological advancement, 2) Meeting Expanding and Evolving User Needs in an increasingly information centric society, and 3) Partnering with an Increasingly Capable Enterprise that has grown considerably since the time of the MAR. Weather Services for the Nation presents three main recommendations for responding to these challenges. These recommendations will help the NWS address these challenges, making it more agile and effective. This will put it on a path to becoming second to none at integrating advances in science and technology into its operations and at meeting user needs, leading in some areas and keeping pace in others. It will have the highest quality core capabilities among national weather services. It will have a more agile organizational structure and workforce that allow it to directly or indirectly reach more end-users, save more lives, and help more businesses. And it will have leveraged these capabilities through the broader enterprise. This approach will make possible societal benefits beyond what the NWS budget alone allows.
This report reviews the U.S. Climate Change Science Program's new draft assessment product on characterizing and communicating uncertainty information for climate change decision making, one of 21 climate change assessment products that the program is developing to meet the requirements of the 1990 Global Change Research Act. Although the draft assessment is effective in discussing methods of characterizing uncertainty, it falls short in several ways. It is written for researchers involved in assessment efforts and will likely be of use to them, but does not address other key audiences, particularly policymakers, decision-makers, and members of the media and general public. In addition, it does not assess the full range of "best practice approaches" for characterizing, incorporating, and communicating uncertainty. These weaknesses were due in part to a change in the prospectus after the process had begun to include new target audiences and a different scope of work. It will take a substantial revision of the current draft or production of a companion document, both requiring additional authors, to address these issues.
In this study, the committee explores ways the National Weather Service (NWS) can take advantage of continuing advances in science and technology to meet the challenges of the future. The predictions are focused on the target year 2025. Because specific predictions about the state of science and technology or the NWS more than 25 years in the future will not be entirely accurate, the goal of this report is to identify and highlight trends that are most likely to influence change. The Panel on the Road Map for the Future National Weather Service developed an optimistic vision for 2025 based on advances in science and technology.
The U.S. government supports a large, diverse suite of activities that can be broadly characterized as "global change research." Such research offers a wide array of benefits to the nation, in terms of protecting public health and safety, enhancing economic strength and competitiveness, and protecting the natural systems upon which life depends. The U.S. Global Change Research Program (USGCRP), which coordinates the efforts of numerous agencies and departments across the federal government, was officially established in 1990 through the U.S. Global Change Research Act (GCRA). In the subsequent years, the scope, structure, and priorities of the Program have evolved, (for example, it was referred to as the Climate Change Science Program [CCSP] for the years 2002-2008), but throughout, the Program has played an important role in shaping and coordinating our nation's global change research enterprise. This research enterprise, in turn, has played a crucial role in advancing understanding of our changing global environment and the countless ways in which human society affects and is affected by such changes. In mid-2011, a new NRC Committee to Advise the USGCRP was formed and charged to provide a centralized source of ongoing whole-program advice to the USGCRP. The first major task of this committee was to provide a review of the USGCRP draft Strategic Plan 2012-2021 (referred to herein as "the Plan"), which was made available for public comment on September 30, 2011. A Review of the U.S. Global Change Research Program's Strategic Plan addresses an array of suggestions for improving the Plan, ranging from relatively small edits to large questions about the Program's scope, goals, and capacity to meet those goals. The draft Plan proposes a significant broadening of the Program's scope from the form it took as the CCSP. Outlined in this report, issues of key importance are the need to identify initial steps the Program will take to actually achieve the proposed broadening of its scope, to develop critical science capacity that is now lacking, and to link the production of knowledge to its use; and the need to establish an overall governance structure that will allow the Program to move in the planned new directions.
The US Global Change Research Program (USGCRP) is a collection of 13 Federal entities charged by law to assist the United States and the world to understand, assess, predict, and respond to human-induced and natural processes of global change. As the understanding of global change has evolved over the past decades and as demand for scientific information on global change has increased, the USGCRP has increasingly focused on research that can inform decisions to cope with current climate variability and change, to reduce the magnitude of future changes, and to prepare for changes projected over coming decades. Overall, the current breadth and depth of research in these agencies is insufficient to meet the country's needs, particularly to support decision makers. This report provides a rationale for evaluating current program membership and capabilities and identifying potential new agencies and departments in the hopes that these changes will enable the program to more effectively inform the public and prepare for the future. It also offers actionable recommendations for adjustments to the methods and procedures that will allow the program to better meet its stated goals.
Formed in 2002 to coordinate and direct U.S. efforts in climate change and global change research, the Program incorporates and builds upon the Global Change Research Program, U.S. Department of Energy) and adds a new component - the Climate Change Research Initiative. A draft strategic plan for the Climate Change Science Program was released to the scientific community and public in November 2002. At the request of the CCSP, the National Academies formed a Committee to review the draft strategy plan and the results are reported here.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.