Cost and schedule growth is a problem experienced by many types of projects in many fields of endeavor. Based on prior studies of cost growth in NASA and Department of Defense projects, this book identifies specific causes of cost growth associated with NASA Earth and space science missions and provides guidance on how NASA can overcome these specific problems. The recommendations in this book focus on changes in NASA policies that would directly reduce or eliminate the cost growth of Earth and space science missions. Large cost growth is a concern for Earth and space science missions, and it can be a concern for other missions as well. If the cost growth is large enough, it can create liquidity problems for NASA's Science Mission Directorate that in turn cause cost profile changes and development delays that amplify the overall cost growth for other concurrent and/or pending missions. Addressing cost growth through the allocation of artificially high reserves is an inefficient use of resources because it unnecessarily diminishes the portfolio of planned flights. The most efficient use of resources is to establish realistic budgets and reserves and effective management processes that maximize the likelihood that mission costs will not exceed reserves. NASA is already taking action to reduce cost growth; additional steps, as recommended herein, will help improve NASA's mission planning process and achieve the goal of ensuring frequent mission opportunities for NASA Earth and space science.
Through an examination of case studies, agency briefings, and existing reports, and drawing on personal knowledge and direct experience, the Committee on Assessment of Impediments to Interagency Cooperation on Space and Earth Science Missions found that candidate projects for multiagency collaboration in the development and implementation of Earth-observing or space science missions are often intrinsically complex and, therefore costly, and that a multiagency approach to developing these missions typically results in additional complexity and cost. Advocates of collaboration have sometimes underestimated the difficulties and associated costs and risks of dividing responsibility and accountability between two or more partners; they also discount the possibility that collaboration will increase the risk in meeting performance objectives. This committee's principal recommendation is that agencies should conduct Earth and space science projects independently unless: It is judged that cooperation will result in significant added scientific value to the project over what could be achieved by a single agency alone; or Unique capabilities reside within one agency that are necessary for the mission success of a project managed by another agency; or The project is intended to transfer from research to operations necessitating a change in responsibility from one agency to another during the project; or There are other compelling reasons to pursue collaboration, for example, a desire to build capacity at one of the cooperating agencies. Even when the total project cost may increase, parties may still find collaboration attractive if their share of a mission is more affordable than funding it alone. In these cases, alternatives to interdependent reliance on another government agency should be considered. For example, agencies may find that buying services from another agency or pursuing interagency coordination of spaceflight data collection is preferable to fully interdependent cooperation.
Understanding the effects of natural and human-induced changes on the global environment and their implications requires a foundation of integrated observations of land, sea, air and space, on which to build credible information products, forecast models, and other tools for making informed decisions. The 2007 National Research Council report on decadal survey called for a renewal of the national commitment to a program of Earth observations in which attention to securing practical benefits for humankind plays an equal role with the quest to acquire new knowledge about the Earth system. NASA responded favorably and aggressively to this survey, embracing its overall recommendations for Earth observations, missions, technology investments, and priorities for the underlying science. As a result, the science and applications communities have made significant progress over the past 5 years. However, the Committee on Assessment of NASA's Earth Science Program found that the survey vision is being realized at a far slower pace than was recommended, principally because the required budget was not achieved. Exacerbating the budget shortfalls, NASA Earth science programs experienced launch failures and delays and the cost of implementing missions increased substantially as a result of changes in mission scope, increases in launch vehicle costs and/or the lack of availability of a medium-class launch vehicle, under-estimation of costs by the decadal survey, and unfunded programmatic changes that were required by Congress and the Office of Management and Budget. In addition, the National Oceanic and Atmospheric Administration (NOAA) has made significant reductions in scope to its future Earth environmental observing satellites as it contends with budget shortfalls. Earth Science and Applications from Space: A Midterm Assessment of NASA's Implementation of the Decadal Survey recommends a number of steps to better manage existing programs and to implement future programs that will be recommended by the next decadal survey. The report also highlights the urgent need for the Executive Branch to develop and implement an overarching multiagency national strategy for Earth observations from space, a key recommendation of the 2007 decadal survey that remains unfulfilled.
In recent years, planetary science has seen a tremendous growth in new knowledge. Deposits of water ice exist at the Moon's poles. Discoveries on the surface of Mars point to an early warm wet climate, and perhaps conditions under which life could have emerged. Liquid methane rain falls on Saturn's moon Titan, creating rivers, lakes, and geologic landscapes with uncanny resemblances to Earth's. Vision and Voyages for Planetary Science in the Decade 2013-2022 surveys the current state of knowledge of the solar system and recommends a suite of planetary science flagship missions for the decade 2013-2022 that could provide a steady stream of important new discoveries about the solar system. Research priorities defined in the report were selected through a rigorous review that included input from five expert panels. NASA's highest priority large mission should be the Mars Astrobiology Explorer Cacher (MAX-C), a mission to Mars that could help determine whether the planet ever supported life and could also help answer questions about its geologic and climatic history. Other projects should include a mission to Jupiter's icy moon Europa and its subsurface ocean, and the Uranus Orbiter and Probe mission to investigate that planet's interior structure, atmosphere, and composition. For medium-size missions, Vision and Voyages for Planetary Science in the Decade 2013-2022 recommends that NASA select two new missions to be included in its New Frontiers program, which explores the solar system with frequent, mid-size spacecraft missions. If NASA cannot stay within budget for any of these proposed flagship projects, it should focus on smaller, less expensive missions first. Vision and Voyages for Planetary Science in the Decade 2013-2022 suggests that the National Science Foundation expand its funding for existing laboratories and establish new facilities as needed. It also recommends that the program enlist the participation of international partners. This report is a vital resource for government agencies supporting space science, the planetary science community, and the public.
NASA's Earth Science Division (ESD) conducts a wide range of satellite and suborbital missions to observe Earth's land surface and interior, biosphere, atmosphere, cryosphere, and oceans as part of a program to improve understanding of Earth as an integrated system. Earth observations provide the foundation for critical scientific advances and environmental data products derived from these observations are used in resource management and for an extraordinary range of societal applications including weather forecasts, climate projections, sea level change, water management, disease early warning, agricultural production, and the response to natural disasters. As the complexity of societal infrastructure and its vulnerability to environmental disruption increases, the demands for deeper scientific insights and more actionable information continue to rise. To serve these demands, NASA's ESD is challenged with optimizing the partitioning of its finite resources among measurements intended for exploring new science frontiers, carefully characterizing long-term changes in the Earth system, and supporting ongoing societal applications. This challenge is most acute in the decisions the Division makes between supporting measurement continuity of data streams that are critical components of Earth science research programs and the development of new measurement capabilities. This report seeks to establish a more quantitative understanding of the need for measurement continuity and the consequences of measurement gaps. Continuity of NASA's Earth's Observations presents a framework to assist NASA's ESD in their determinations of when a measurement or dataset should be collected for durations longer than the typical lifetimes of single satellite missions.
Assessment of Mission Size Trade-offs for NASA's Earth and Space Science Missions addresses fundamental issues of mission architecture in the nation's scientific space program and responds to the FY99 Senate conference report, which requested that NASA commission a study to assess the strengths and weaknesses of small, medium, and large missions. This report evaluates the general strengths and weaknesses of small, medium, and large missions in terms of their potential scientific productivity, responsiveness to evolving opportunities, ability to take advantage of technological progress, and other factors that may be identified during the study; identifies which elements of the SSB and NASA science strategies will require medium or large missions to accomplish high-priority science objectives; and recommends general principles or criteria for evaluating the mix of mission sizes in Earth and space science programs. Assessment of Mission Size Trade-offs for NASA's Earth and Space Science Missions considers not only scientific, technological, and cost trade-offs, but also institutional and structural issues pertaining to the vigor of the research community, government-industry university partnerships, graduate student training, and the like.
NASA's Science Mission Directorate (SMD) currently operates over five dozen missions, with approximately two dozen additional missions in development. These missions span the scientific fields associated with SMD's four divisionsâ€"Astrophysics, Earth Science, Heliophysics, and Planetary Sciences. Because a single mission can consist of multiple spacecraft, NASA-SMD is responsible for nearly 100 operational spacecraft. The most high profile of these are the large strategic missions, often referred to as "flagships." Large strategic missions are essential to maintaining the global leadership of the United States in space exploration and in science because only the United States has the budget, technology, and trained personnel in multiple scientific fields to conduct missions that attract a range of international partners. This report examines the role of large, strategic missions within a balanced program across NASA-SMD space and Earth sciences programs. It considers the role and scientific productivity of such missions in advancing science, technology and the long-term health of the field, and provides guidance that NASA can use to help set the priority of larger missions within a properly balanced program containing a range of mission classes.
More than four decades have passed since a human first set foot on the Moon. Great strides have been made in our understanding of what is required to support an enduring human presence in space, as evidenced by progressively more advanced orbiting human outposts, culminating in the current International Space Station (ISS). However, of the more than 500 humans who have so far ventured into space, most have gone only as far as near-Earth orbit, and none have traveled beyond the orbit of the Moon. Achieving humans' further progress into the solar system had proved far more difficult than imagined in the heady days of the Apollo missions, but the potential rewards remain substantial. During its more than 50-year history, NASA's success in human space exploration has depended on the agency's ability to effectively address a wide range of biomedical, engineering, physical science, and related obstacles-an achievement made possible by NASA's strong and productive commitments to life and physical sciences research for human space exploration, and by its use of human space exploration infrastructures for scientific discovery. The Committee for the Decadal Survey of Biological and Physical Sciences acknowledges the many achievements of NASA, which are all the more remarkable given budgetary challenges and changing directions within the agency. In the past decade, however, a consequence of those challenges has been a life and physical sciences research program that was dramatically reduced in both scale and scope, with the result that the agency is poorly positioned to take full advantage of the scientific opportunities offered by the now fully equipped and staffed ISS laboratory, or to effectively pursue the scientific research needed to support the development of advanced human exploration capabilities. Although its review has left it deeply concerned about the current state of NASA's life and physical sciences research, the Committee for the Decadal Survey on Biological and Physical Sciences in Space is nevertheless convinced that a focused science and engineering program can achieve successes that will bring the space community, the U.S. public, and policymakers to an understanding that we are ready for the next significant phase of human space exploration. The goal of this report is to lay out steps and develop a forward-looking portfolio of research that will provide the basis for recapturing the excitement and value of human spaceflight-thereby enabling the U.S. space program to deliver on new exploration initiatives that serve the nation, excite the public, and place the United States again at the forefront of space exploration for the global good.
NASA's Science Mission Directorate (SMD) is engaged in the final stages of a comprehensive, agency-wide effort to develop a new strategic plan at a time when its budget is under considerable stress. SMD's Science Plan serves to provide more detail on its four traditional science disciplines - astronomy and astrophysics, solar and space physics (also called heliophysics), planetary science, and Earth remote sensing and related activities - than is possible in the agency-wide Strategic Plan. Review of the Draft 2014 Science Mission Directorate Science Plan comments on the responsiveness of SMD's Science Plan to the National Research Council's guidance on key science issues and opportunities in recent NRC decadal reports. This study focuses on attention to interdisciplinary aspects and overall scientific balance; identification and exposition of important opportunities for partnerships as well as education and public outreach; and integration of technology development with the science program. The report provides detailed findings and recommendations relating to the draft Science Plan.
NASA's current missions to the International Space Station (ISS) and potential future exploration missions involving extended stays by astronauts on the lunar surface, as well as the possibility of near- Earth object (NEO) or Mars missions, present challenges in protecting astronauts from radiation risks. These risks arise from a number of sources, including solar particle events (SPEs), galactic cosmic rays (GCRs), secondary radiation from surface impacts, and even the nuclear isotope power sources transported with the astronauts. The serious early and late radiation health effects potentially posed by these exposures are equally varied, ranging from early signs of radiation sickness to cancer induction. Other possible effects include central nervous system damage, cataracts, cardiovascular damage, heritable effects, impaired wound healing, and infertility. Recent research, much of which has been sponsored by NASA, has focused on understanding and quantifying the radiation health risks posed by space radiation environments. Although many aspects of the space radiation environments are now relatively well characterized, important uncertainties still exist regarding biological effects and thus regarding the level and types of risks faced by astronauts. This report presents an evaluation of NASA's proposed space radiation cancer risk assessment model, which is described in the 2011 NASA report, Space Radiation Cancer Risk Projections and Uncertainties-2010. The evaluation in Technical Evaluation of the NASA Model for Cancer Risk to Astronauts Due to Space Radiation considers the model components, input data (for the radiation types, estimated doses, and epidemiology), and the associated uncertainties. This report also identifies gaps in NASA's current research strategy for reducing the uncertainties in cancer induction risks.
On September 8-9, 2011, experts in solar physics, climate models, paleoclimatology, and atmospheric science assembled at the National Center for Atmospheric Research (NCAR) in Boulder, Colorado for a workshop to consider the Sun's variability over time and potential Sun-climate connections. While it does not provide findings, recommendations, or consensus on the current state of the science, The Effects of Solar Variability on Earth's Climate: A Workshop Report briefly introduces the primary topics discussed by presenters at the event. As context for these topics, the summary includes background information on the potential Sun-climate connection, the measurement record from space, and potential perturbations of climate due to long-term solar variability. This workshop report also summarizes some of the science questions explored by the participants as potential future research endeavors.
From the interior of the Sun, to the upper atmosphere and near-space environment of Earth, and outward to a region far beyond Pluto where the Sun's influence wanes, advances during the past decade in space physics and solar physics-the disciplines NASA refers to as heliophysics-have yielded spectacular insights into the phenomena that affect our home in space. Solar and Space Physics, from the National Research Council's (NRC's) Committee for a Decadal Strategy in Solar and Space Physics, is the second NRC decadal survey in heliophysics. Building on the research accomplishments realized during the past decade, the report presents a program of basic and applied research for the period 2013-2022 that will improve scientific understanding of the mechanisms that drive the Sun's activity and the fundamental physical processes underlying near-Earth plasma dynamics, determine the physical interactions of Earth's atmospheric layers in the context of the connected Sun-Earth system, and enhance greatly the capability to provide realistic and specific forecasts of Earth's space environment that will better serve the needs of society. Although the recommended program is directed primarily at NASA and the National Science Foundation for action, the report also recommends actions by other federal agencies, especially the parts of the National Oceanic and Atmospheric Administration charged with the day-to-day (operational) forecast of space weather. In addition to the recommendations included in this summary, related recommendations are presented in this report.
NASA operates a large number of space science missions, approximately three-quarters of which are currently in their extended operations phase. They represent not only a majority of operational space science missions, but a substantial national investment and vital national assets. They are tremendously scientifically productive, making many of the major discoveries that are reported in the media and that rewrite textbooks. Extending Science â€" NASA's Space Science Mission Extensions and the Senior Review Process evaluates the scientific benefits of missions extensions, the current process for extending missions, the current biennial requirement for senior reviews of mission extensions, the balance between starting new missions and extending operating missions, and potential innovative cost-reduction proposals for extended missions, and makes recommendations based on this review.
In 1972 NASA launched the Earth Resources Technology Satellite (ETRS), now known as Landsat 1, and on February 11, 2013 launched Landsat 8. Currently the United States has collected 40 continuous years of satellite records of land remote sensing data from satellites similar to these. Even though this data is valuable to improving many different aspects of the country such as agriculture, homeland security, and disaster mitigation; the availability of this data for planning our nation\'s future is at risk. Thus, the Department of the Interior\'s (DOI\'s) U.S. Geological Survey (USGS) requested that the National Research Council\'s (NRC\'s) Committee on Implementation of a Sustained Land Imaging Program review the needs and opportunities necessary for the development of a national space-based operational land imaging capability. The committee was specifically tasked with several objectives including identifying stakeholders and their data needs and providing recommendations to facilitate the transition from NASA\'s research-based series of satellites to a sustained USGS land imaging program. Landsat and Beyond: Sustaining and Enhancing the Nation's Land Imaging Program is the result of the committee\'s investigation. This investigation included meetings with stakeholders such as the DOI, NASA, NOAA, and commercial data providers. The report includes the committee\'s recommendations, information about different aspects of the program, and a section dedicated to future opportunities.
The National Research Council has conducted 11 decadal surveys in the Earth and space sciences since 1964 and released the latest four surveys in the past 8 years. The decadal surveys are notable in their ability to sample thoroughly the research interest, aspirations, and needs of a scientific community. Through a rigorous process, a primary survey committee and thematic panels of community members construct a prioritized program of science goals and objectives and define an executable strategy for achieving them. These reports play a critical role in defining the nation's agenda in that science area for the following 10 years, and often beyond. The Space Science Decadal Surveys considers the lessons learned from previous surveys and presents options for possible changes and improvements to the process, including the statement of task, advanced preparation, organization, and execution. This report discusses valuable aspects of decadal surveys that could taken further, as well as some challenges future surveys are likely to face in searching for the richest areas of scientific endeavor, seeking community consensus of where to go next, and planning how to get there. The Space Science Decadal Surveys describes aspects in the decadal survey prioritization process, including balance in the science program and across the discipline; balance between the needs of current researchers and the development of the future workforce; and balance in mission scale - smaller, competed programs versus large strategic missions.
Principal Investigator-Led (PI-led) missions are an important element of NASA's space science enterprise. While several NRC studies have considered aspects of PI-led missions in the course of other studies for NASA, issues facing the PI-led missions in general have not been subject to much analysis in those studies. Nevertheless, these issues are raising increasingly important questions for NASA, and it requested the NRC to explore them as they currently affect PI-led missions. Among the issues NASA asked to have examined were those concerning cost and scheduling, the selection process, relationships among PI-led team members, and opportunities for knowledge transfer to new PIs. This report provides a discussion of the evolution and current status of the PIled mission concept, the ways in which certain practices have affected its performance, and the steps that can carry it successfully into the future. The study was done in collaboration with the National Academy of Public Administration.
NASA proposed to make a hardware contribution to the European Space Agency's (ESA's) Euclid mission in exchange for U.S. membership on the Euclid Science Team and science data access. The Euclid mission will employ a space telescope that will make potentially important contributions to probing dark energy and to the measurement of cosmological parameters. Euclid will image a large fraction of the extragalactic sky at unprecedented resolution and measure spectra for millions of galaxies. Assessment of a Plan for U.S. Participation in Euclid evaluates whether a small investment in Euclid (around $20 million in hardware) is a viable part of an overall strategy to pursue the science goals set forth in New Worlds, New Horizons in Astronomy and Astrophysics, a decadal plan for ground- and space- based astronomy and astrophysics. The top-ranked large-scale, space-based priority of the New Worlds, New Horizons is the Wide-Field Infrared Survey Telescope (WFIRST). WFIRST has a broad, wide-field, near-infrared capability that will serve a wide variety of science programs of U.S. astronomers, including exoplanet research, near-infrared sky surveys, a guest observer program, and dark energy research. In carrying out this study the authoring committee's intent has been to be clear that this report does not alter New Worlds, New Horizon's plans for the implementation of the survey's priorities. Assessment of a Plan for U.S. Participation in Euclid concludes that the NASA proposal would represent a valuable first step toward meeting one of the science goals (furthering dark energy research) of WFIRST. While WFIRST dark energy measurements are expected to be superior to Euclid's, U.S. participation in Euclid will have clear scientific, technical, and programmatic benefits to the U.S. community as WFIRST and Euclid go forward. According to this report, the current NASA proposal, to invest modestly in Euclid, is consistent with an expeditious development of WFIRST and the achievement of the broader, and more ambitious, goals outlined in New Worlds, New Horizons. Knowledge gained from the Euclid project could help optimize the science return of the WFIRST mission as well. Such an investment will further the goals of New Worlds, New Horizons, be helpful to the preparations for WFIRST, and enhance WFIRST's chances of success.
NASA's space and Earth science program is composed of two principal components: spaceflight projects and mission-enabling activities. Most of the budget of NASA's Science Mission Directorate (SMD) is applied to spaceflight missions, but NASA identifies nearly one quarter of the SMD budget as "mission enabling." The principal mission-enabling activities, which traditionally encompass much of NASA's research and analysis (R&A) programs, include support for basic research, theory, modeling, and data analysis; suborbital payloads and flights and complementary ground-based programs; advanced technology development; and advanced mission and instrumentation concept studies. While the R&A program is essential to the development and support of NASA's diverse set of space and Earth science missions, defining and articulating an appropriate scale for mission-enabling activities have posed a challenge throughout NASA's history. This volume identifies the appropriate roles for mission-enabling activities and metrics for assessing their effectiveness. Furthermore, the book evaluates how, from a strategic perspective, decisions should be made about balance between mission-related and mission-enabling elements of the overall program as well as balance between various elements within the mission-enabling component. Collectively, these efforts will help SMD to make a good program even better.
The National Aeronautics and Space Administration (NASA) is widely admired for astonishing accomplishments since its formation in 1958. Looking ahead over a comparable period of time, what can the nation and the world expect of NASA? What will be the agency's goals and objectives, and what will be the strategy for achieving them? More fundamentally, how will the goals, objectives, and strategy be established and by whom? How will they be modified to reflect changes in science, technology, national priorities, and available resources? In late 2011, the United States Congress directed the NASA Office of Inspector General to commission a "comprehensive independent assessment of NASA's strategic direction and agency management." Subsequently, NASA requested that the National Research Council (NRC) conduct this independent assessment. In the spring of 2012, the NRC Committee on NASA's Strategic Direction was formed and began work on its task. The committee determined that, only with a national consensus on the agency's future strategic directionalong the lines described in the full NRC reportcan NASA continue to deliver the wonder, the knowledge, the national security and economic benefits, and the technology that have been typified by its earlier history. NASA's Strategic Direction and the Need for a National Consensus summarizes the findings and recommendations of the committee.
NASA's space and Earth science program is composed of two principal components: spaceflight projects and mission-enabling activities. Most of the budget of NASA's Science Mission Directorate (SMD) is applied to spaceflight missions, but NASA identifies nearly one quarter of the SMD budget as "mission enabling." The principal mission-enabling activities, which traditionally encompass much of NASA's research and analysis (R&A) programs, include support for basic research, theory, modeling, and data analysis; suborbital payloads and flights and complementary ground-based programs; advanced technology development; and advanced mission and instrumentation concept studies. While the R&A program is essential to the development and support of NASA's diverse set of space and Earth science missions, defining and articulating an appropriate scale for mission-enabling activities have posed a challenge throughout NASA's history. This volume identifies the appropriate roles for mission-enabling activities and metrics for assessing their effectiveness. Furthermore, the book evaluates how, from a strategic perspective, decisions should be made about balance between mission-related and mission-enabling elements of the overall program as well as balance between various elements within the mission-enabling component. Collectively, these efforts will help SMD to make a good program even better.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.