Attention has been drawn to the subject of how ocean noise affects marine mammals by a series of marine mammal strandings, lawsuits, and legislative hearings, and most recently, the report from the U.S. Commission on Ocean Policy. One way to assess the impact of ocean noise is to consider whether it causes changes in animal behavior that are "biologically significant," that is, those that affect an animal's ability to grow, survive, and reproduce. This report offers a conceptual model designed to clarify which marine mammal behaviors are biologically significant for conservation purposes. The report is intended to help scientists and policymakers interpret provisions of the federal Marine Mammal Protection Act.
Marine mammals face a large array of stressors, including loss of habitat, chemical and noise pollution, and bycatch in fishing, which alone kills hundreds of thousands of marine mammals per year globally. To discern the factors contributing to population trends, scientists must consider the full complement of threats faced by marine mammals. Once populations or ecosystems are found to be at risk of adverse impacts, it is critical to decide which combination of stressors to reduce to bring the population or ecosystem into a more favorable state. Assessing all stressors facing a marine mammal population also provides the environmental context for evaluating whether an additional activity could threaten it. Approaches to Understanding the Cumulative Effects of Stressors on Marine Mammals builds upon previous reports to assess current methodologies used for evaluating cumulative effects and identify new approaches that could improve these assessments. This review focuses on ways to quantify exposure-related changes in the behavior, health, or body condition of individual marine mammals and makes recommendations for future research initiatives.
For the 119 species of marine mammals, as well as for some other aquatic animals, sound is the primary means of learning about the environment and of communicating, navigating, and foraging. The possibility that human-generated noise could harm marine mammals or significantly interfere with their normal activities is an issue of increasing concern. Noise and its potential impacts have been regulated since the passage of the Marine Mammal Protection Act of 1972. Public awareness of the issue escalated in 1990s when researchers began using high-intensity sound to measure ocean climate changes. More recently, the stranding of beaked whales in proximity to Navy sonar use has again put the issue in the spotlight. Ocean Noise and Marine Mammals reviews sources of noise in the ocean environment, what is known of the responses of marine mammals to acoustic disturbance, and what models exist for describing ocean noise and marine mammal responses. Recommendations are made for future data gathering efforts, studies of marine mammal behavior and physiology, and modeling efforts necessary to determine what the long- and short-term impacts of ocean noise on marine mammals.
Assessment of the U.S. Outer Continental Shelf Environmental Studies Program reviews the ecological studies done by the Environmental Studies Program of the Minerals Management Service. This program, which has spent $10 million a year on ecological studies in recent years, is designed to provide information to predict and manage the environmental effects of outer continental shelf oil and gas activities. The book considers studies on marine mammals and endangered species, birds, benthic organisms, fisheries, and marine ecosystems and makes recommendations for future studies.
The ocean is a fundamental component of the earth's biosphere. It covers roughly 70 percent of Earth's surface and plays a pivotal role in the cycling of life's building blocks, such as nitrogen, carbon, oxygen, and sulfur. The ocean also contributes to regulating the climate system. Most of the primary producers in the ocean comprise of microscopic plants and some bacteria; and these photosynthetic organisms (phytoplankton) form the base of the ocean's food web. Monitoring the health of the ocean and its productivity is critical to understanding and managing the ocean's essential functions and living resources. Because the ocean is so vast and difficult for humans to explore, satellite remote sensing of ocean color is currently the only way to observe and monitor the biological state of the surface ocean globally on time scales of days to decades. Ocean color measurements reveal a wealth of ecologically important characteristics including: chlorophyll concentration, the rate of phytoplankton photosynthesis, sediment transport, dispersion of pollutants, and responses of oceanic biota to long-term climate changes. Continuity of satellite ocean color data and associated climate research products are presently at significant risk for the U.S. ocean color community. Assessing Requirements for Sustained Ocean Color Research and Operations aims to identify the ocean color data needs for a broad range of end users, develop a consensus for the minimum requirements, and outline options to meet these needs on a sustained basis. The report assesses lessons learned in global ocean color remote sensing from the SeaWiFS/MODIS era to guide planning for acquisition of future global ocean color radiance data to support U.S. research and operational needs.
With the responsibility to ensure the safety of food, drugs, and other products, the U.S. Food and Drug Administration (FDA) faces decisions that may have public-health consequences every day. Often the decisions must be made quickly and on the basis of incomplete information. FDA recognized that collecting and evaluating information on the risks posed by the regulated products in a systematic manner would aid in its decision-making process. Consequently, FDA and the Department of Health and Human Services (DHHS) asked the National Research Council (NRC) to develop a conceptual model that could evaluate products or product categories that FDA regulates and provide information on the potential health consequences associated with them. A Risk-Characterization Framework for Decision-Making at the Food and Drug Administration describes the proposed risk-characterization framework that can be used to evaluate, compare, and communicate the public-health consequences of decisions concerning a wide variety of products. The framework presented in this report is intended to complement other risk-based approaches that are in use and under development at FDA, not replace them. It provides a common language for describing potential public-health consequences of decisions, is designed to have wide applicability among all FDA centers, and draws extensively on the well-vetted risk literature to define the relevant health dimensions for decision-making at the FDA. The report illustrates the use of that framework with several case studies, and provides conclusions and recommendations.
In May 2012, the National Park Service (NPS) asked the National Research Council to conduct a scientific review of a Draft Environmental Impact Statement (DEIS) to evaluate the effects of issuing a Special Use Permit for the commercial shellfish operation in Drakes Estero for a ten year time span. Drakes Bay Oyster Company (DBOC) currently operates the shellfish farm in Drakes Estero, part of Point Reyes National Seashore, under a reservation of use and occupancy that will expire on November 30, 2012 if a new Special Use Permit is not issued. Congress granted the Secretary of the Interior the discretionary authority to issue a new ten year Special Use Permit in 2009; hence, the Secretary now has the option to proceed with or delay the conversion of Drakes Estero to wilderness. To inform this decision, the NPS drafted an Environmental Impact Statement (EIS) for the DBOC Special Use Permit. Under the National Environmental policy Act (NEPA), as EIS is prepared to inform the public and agency decision-makers regarding the potential environmental impacts of a proposed federal action and reasonable alternatives. The Department of the Interior commissioned a peer review of the DEIS that was released in March 2012. Scientific Review of the Draft Environmental Impact Statement: Drakes Bay Oyster Company Special Use Permit reviews the scientific information presented in the DEIS that is used to determine the potential environmental impacts of a ten year extension of DBOC operations. In particular, this report responds to the following tasks given to the committee: assess the scientific information, analysis, and conclusions presented in the DEIS for Drakes Bay Oyster Company Special Use Permit, and evaluate whether the peer review of the DEIS is fundamentally sound and materially sufficient. Scientific Review of the Draft Environmental Impact Statement: Drakes Bay Oyster Company Special Use Permit focuses on eight of twelve resource categories considered in the DEIS: wetlands, eelgrass, wildlife and wildlife habitat, special-status species, coastal flood zones, soundscapes, water quality, and socioeconomic resources.
Cities and Their Vital Systems asks basic questions about the longevity, utility, and nature of urban infrastructures; analyzes how they grow, interact, and change; and asks how, when, and at what cost they should be replaced. Among the topics discussed are problems arising from increasing air travel and airport congestion; the adequacy of water supplies and waste treatment; the impact of new technologies on construction; urban real estate values; and the field of "telematics," the combination of computers and telecommunications that makes money machines and national newspapers possible.
The United States faces decisions requiring information about the oceans in vastly expanded scales of time and space and from oceanic sectors not accessible with the suite of tools now used by scientists and engineers. Advances in guidance and control, communications, sensors, and other technologies for undersea vehicles can provide an opportunity to understand the oceans' influence on the energy and chemical balance that sustains humankind and to manage and deliver resources from and beneath the sea. This book assesses the state of undersea vehicle technology and opportunities for vehicle applications in science and industry. It provides guidance about vehicle subsystem development priorities and describes how national research can be focused most effectively.
Because of the pervasive and substantial decline of Atlantic salmon populations in Maine over the past 150 years, and because they are close to extinction, a comprehensive statewide action should be taken now to ensure their survival. The populations of Atlantic salmon have declined drastically, from an estimated half million adult salmon returning to U.S. rivers each year in the early 1800s to perhaps as few as 1,000 in 2001. The report recommends implementing a formalized decision-making approach to establish priorities, evaluate options and coordinate plans for conserving and restoring the salmon.
Hydrologyâ€"the science of waterâ€"is central to our understanding of the global environment and its many problems. Opportunities in the Hydrologic Sciences explains how the science of water historically has played second fiddle to its applications and how we now must turn to the hydrologic sciences to solve some of the emerging problems. This first book of its kind presents a blueprint for establishing hydrologic science among the geosciences. Informative and well-illustrated chapters explore what we know about the forces that drive the global water system, highlighting promising research topics in hydrology's major subfields. The book offers specific recommendations for improving hydrologic education, from kindergarten through graduate school. In addition, a chapter on the basics of the science is interesting for the scientist and understandable to the lay reader. This readable volume is enhanced by a series of brief biographical sketches of past leaders in the field and fascinating vignettes on important applied problems, from the relevance of hydrology to radioactive waste disposal to the study of ancient water flows on Mars. The volume concludes with a report on current research funding and an outline of strategies for scientists and professional societies to advance the field. Opportunities in the Hydrologic Sciences is indispensable to policymakers in science and education, research managers in geoscience programs, researchers, educators, graduate students, and future hydrologists.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.