Bioavailability refers to the extent to which humans and ecological receptors are exposed to contaminants in soil or sediment. The concept of bioavailability has recently piqued the interest of the hazardous waste industry as an important consideration in deciding how much waste to clean up. The rationale is that if contaminants in soil and sediment are not bioavailable, then more contaminant mass can be left in place without creating additional risk. A new NRC report notes that the potential for the consideration of bioavailability to influence decision-making is greatest where certain chemical, environmental, and regulatory factors align. The current use of bioavailability in risk assessment and hazardous waste cleanup regulations is demystified, and acceptable tools and models for bioavailability assessment are discussed and ranked according to seven criteria. Finally, the intimate link between bioavailability and bioremediation is explored. The report concludes with suggestions for moving bioavailability forward in the regulatory arena for both soil and sediment cleanup.
Bioavailability refers to the extent to which humans and ecological receptors are exposed to contaminants in soil or sediment. The concept of bioavailability has recently piqued the interest of the hazardous waste industry as an important consideration in deciding how much waste to clean up. The rationale is that if contaminants in soil and sediment are not bioavailable, then more contaminant mass can be left in place without creating additional risk. A new NRC report notes that the potential for the consideration of bioavailability to influence decision-making is greatest where certain chemical, environmental, and regulatory factors align. The current use of bioavailability in risk assessment and hazardous waste cleanup regulations is demystified, and acceptable tools and models for bioavailability assessment are discussed and ranked according to seven criteria. Finally, the intimate link between bioavailability and bioremediation is explored. The report concludes with suggestions for moving bioavailability forward in the regulatory arena for both soil and sediment cleanup.
Some of the nation's estuaries, lakes and other water bodies contain contaminated sediments that can adversely affect fish and wildlife and may then find their way into people's diets. Dredging is one of the few options available for attempting to clean up contaminated sediments, but it can uncover and re-suspend buried contaminants, creating additional exposures for wildlife and people. At the request of Congress, EPA asked the National Research Council (NRC) to evaluate dredging as a cleanup technique. The book finds that, based on a review of available evidence, dredging's ability to decrease environmental and health risks is still an open question. Analysis of pre-dredging and post-dredging at about 20 sites found a wide range of outcomes in terms of surface sediment concentrations of contaminants: some sites showed increases, some no change, and some decreases in concentrations. Evaluating the potential long-term benefits of dredging will require that the U.S. Environmental Protection Agency step up monitoring activities before, during and after individual cleanups to determine whether it is working there and what combinations of techniques are most effective.
For more than 100 years, the Coeur d' Alene River Basin has been known as "The Silver Valley" for being one of the most productive silver, lead, and zinc mining areas in the United States. Over time, high levels of metals (including lead, arsenic, cadmium, and zinc) were discovered in the local environment and elevated blood lead levels were found in children in communities near the metal-refining and smelter complex. In 1983, the U.S. Environmental Protection Agency (EPA) listed a 21-square mile mining area in northern Idaho as a Superfund site. EPA extended those boundaries in 1998 to include areas throughout the 1500-square mile area Coeur d'Alene River Basin project area. Under Superfund, EPA has developed a plan to clean up the contaminated area that will cost an estimated $359 million over 3 decades-and this effort is only the first step in the cleanup process. Superfund and Mining Megasites: Lessons from Coeur d'Alene River Basin evaluates the issues and concerns that have been raised regarding EPA's decisions about cleaning up the area. The scientific and technical practices used by EPA to make decisions about human health risks at the Coeur d'Alene River Basin Superfund site are generally sound; however, there are substantial concerns regarding environmental protection decisions, particularly dealing with the effectiveness of long-term plans.
This book presents a comprehensive, up-to-date review of technologies for cleaning up contaminants in groundwater and soil. It provides a special focus on three classes of contaminants that have proven very difficult to treat once released to the subsurface: metals, radionuclides, and dense nonaqueous-phase liquids such as chlorinated solvents. Groundwater and Soil Cleanup was commissioned by the Department of Energy (DOE) as part of its program to clean up contamination in the nuclear weapons production complex. In addition to a review of remediation technologies, the book describes new trends in regulation of contaminated sites and assesses DOE's program for developing new subsurface cleanup technologies.
SCOPE, the Scientific Committee on Problems of the Environment, was established by the International Council of Scientific Unions (ICSU) in 1969 as an international, non to governmental, non-profit organisation with the mandate - advance knowledge of the influence of humans on their environment, as well as the effects of these environmental changes upon people, their health and their welfare with particular attention to those influences and effects which are either global or shared by several nations; - to serve as a non-governmental, interdisciplinary and international council of scien tists and as a source of advice for the benefit of governments and intergovernmental and non-governmental bodies with respect to environmental problems. SCOPE has been established because critical environmental concerns call for a thor ough evaluation of the issues at stake, an assessment of their consequences at global and regional levels and the formulation of possible solutions. Through its activities SCOPE identifies available knowledge, then synthesizing it to point out where gaps and uncertainties exist, and to recommend where efforts should be concentrated to develop explanations and solutions.
The 1993 regulation (Part 503 Rule) governing the land application of biosolids was established to protect public health and the environment from reasonably anticipated adverse effects. Included in the regulation are chemical pollutant limits, operational standards designed to reduce pathogens and the attraction of disease vectors, and management practices. This report from the Board on Environmental Studies and Toxicology evaluates the technical methods and approaches used by EPA to establish those standards and practices, focusing specifically on human health protection. The report examines improvements in risk-assessment practices and advances in the scientific database since promulgation of the regulation, and makes recommendations for addressing public health concerns, uncertainties, and data gaps about the technical basis of the biosolids standards.
Most books on ground water and soil cleanup address only the technologies themselves--not why new technologies are or are not developed. Innovations in Ground Water and Soil Cleanup takes a holistic approach to the entire field, addressing both the sluggish commercial development of ground water and soil cleanup technologies and the attributes of specific technologies. It warns that, despite cleanup expenditures of nearly $10 billion a year, the technologies remain rudimentary. This engaging book focuses on the failure of regulatory policy to link cleanup with the financial interests of the company responsible for the contamination. The committee explores why the market for remediation technology is uniquely lacking in economic drivers and why demand for innovation has been so much weaker than predicted. The volume explores how to evaluate the performance of cleanup technologies from the points of view of the public, regulators, cleanup entrepreneurs, and other stakeholders. The committee discusses approaches to standardizing performance testing, so that choosing a technology for a given site can be more timely and less contentious. Following up on Alternatives for Ground Water Cleanup (NRC, 1994), this sequel presents the state of the art in the cleanup of various types of ground water and soil contaminants. Strategies for making valid cost comparisons also are reviewed.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.