The National Geospatial-Intelligence Agency (NGA) provides geospatial intelligence (GEOINT) to support national security, both as a national intelligence and a combat support agency. In the post-9/11 world, the need for faster and more accurate geospatial intelligence is increasing. GEOINT uses imagery and geospatial data and information to provide knowledge for planning, decisions, and action. For example, data from satellites, pilotless aircraft and ground sensors are integrated with maps and other intelligence data to provide location information on a potential target. This report defines 12 hard problems in geospatial science that NGA must resolve in order to evolve their capabilities to meet future needs. Many of the hard research problems are related to integration of data collected from an ever-growing variety of sensors and non-spatial data sources, and analysis of spatial data collected during a sequence of time (spatio-temporal data). The report also suggests promising approaches in geospatial science and related disciplines for meeting these challenges. The results of this study are intended to help NGA prioritize geospatial science research directions.
The National Geospatial-Intelligence Agency (NGA) provides geospatial intelligence (GEOINT) to support national security, both as a national intelligence and a combat support agency. In the post-9/11 world, the need for faster and more accurate geospatial intelligence is increasing. GEOINT uses imagery and geospatial data and information to provide knowledge for planning, decisions, and action. For example, data from satellites, pilotless aircraft and ground sensors are integrated with maps and other intelligence data to provide location information on a potential target. This report defines 12 hard problems in geospatial science that NGA must resolve in order to evolve their capabilities to meet future needs. Many of the hard research problems are related to integration of data collected from an ever-growing variety of sensors and non-spatial data sources, and analysis of spatial data collected during a sequence of time (spatio-temporal data). The report also suggests promising approaches in geospatial science and related disciplines for meeting these challenges. The results of this study are intended to help NGA prioritize geospatial science research directions.
We live in a changing world with multiple and evolving threats to national security, including terrorism, asymmetrical warfare (conflicts between agents with different military powers or tactics), and social unrest. Visually depicting and assessing these threats using imagery and other geographically-referenced information is the mission of the National Geospatial-Intelligence Agency (NGA). As the nature of the threat evolves, so do the tools, knowledge, and skills needed to respond. The challenge for NGA is to maintain a workforce that can deal with evolving threats to national security, ongoing scientific and technological advances, and changing skills and expectations of workers. Future U.S. Workforce for Geospatial Intelligence assesses the supply of expertise in 10 geospatial intelligence (GEOINT) fields, including 5 traditional areas (geodesy and geophysics, photogrammetry, remote sensing, cartographic science, and geographic information systems and geospatial analysis) and 5 emerging areas that could improve geospatial intelligence (GEOINT fusion, crowdsourcing, human geography, visual analytics, and forecasting). The report also identifies gaps in expertise relative to NGA's needs and suggests ways to ensure an adequate supply of geospatial intelligence expertise over the next 20 years.
The National Geospatial-Intelligence Agency (NGA) within the Department of Defense has the primary mission of providing timely, relevant, and accurate imagery, imagery intelligence, and geospatial information-collectively known as geospatial intelligence (GEOINT)-in support of national security. In support of its mission, NGA sponsors research that builds the scientific foundation for geospatial intelligence and that reinforces the academic base, thus training the next generation of NGA analysts while developing new approaches to analytical problems. Historically, NGA has supported research in five core areas: (1) photogrammetry and geomatics, (2) remote sensing and imagery science, (3) geodesy and geophysics, (4) cartographic science, and (5) geographic information systems (GIS) and geospatial analysis. Positioning NGA for the future is the responsibility of the InnoVision Directorate, which analyzes intelligence trends, technological advances, and emerging customer and partner concepts to provide cutting-edge technology and process solutions. At the request of InnoVision, the National Research Council (NRC) held a 3-day workshop to explore the evolution of the five core research areas and to identify emerging disciplines that may improve the quality of geospatial intelligence over the next 15 years. This workshop report offers a potential research agenda that would expand NGA's capabilities and improve its effectiveness in providing geospatial intelligence.
We live in a changing world with multiple and evolving threats to national security, including terrorism, asymmetrical warfare (conflicts between agents with different military powers or tactics), and social unrest. Visually depicting and assessing these threats using imagery and other geographically-referenced information is the mission of the National Geospatial-Intelligence Agency (NGA). As the nature of the threat evolves, so do the tools, knowledge, and skills needed to respond. The challenge for NGA is to maintain a workforce that can deal with evolving threats to national security, ongoing scientific and technological advances, and changing skills and expectations of workers. Future U.S. Workforce for Geospatial Intelligence assesses the supply of expertise in 10 geospatial intelligence (GEOINT) fields, including 5 traditional areas (geodesy and geophysics, photogrammetry, remote sensing, cartographic science, and geographic information systems and geospatial analysis) and 5 emerging areas that could improve geospatial intelligence (GEOINT fusion, crowdsourcing, human geography, visual analytics, and forecasting). The report also identifies gaps in expertise relative to NGA's needs and suggests ways to ensure an adequate supply of geospatial intelligence expertise over the next 20 years.
The United States faces numerous, varied, and evolving threats to national security, including terrorism, scarcity and disruption of food and water supplies, extreme weather events, and regional conflicts around the world. Effectively managing these threats requires intelligence that not only assesses what is happening now, but that also anticipates potential future threats. The National Geospatial-Intelligence Agency (NGA) is responsible for providing geospatial intelligence on other countriesâ€"assessing where exactly something is, what it is, and why it is importantâ€"in support of national security, disaster response, and humanitarian assistance. NGA's approach today relies heavily on imagery analysis and mapping, which provide an assessment of current and past conditions. However, augmenting that approach with a strong modeling capability would enable NGA to also anticipate and explore future outcomes. A model is a simplified representation of a real-world system that is used to extract explainable insights about the system, predict future outcomes, or explore what might happen under plausible what-if scenarios. Such models use data and/or theory to specify inputs (e.g., initial conditions, boundary conditions, and model parameters) to produce an output. From Maps to Models: Augmenting the Nation's Geospatial Intelligence Capabilities describes the types of models and analytical methods used to understand real-world systems, discusses what would be required to make these models and methods useful for geospatial intelligence, and identifies supporting research and development for NGA. This report provides examples of models that have been used to help answer the sorts of questions NGA might ask, describes how to go about a model-based investigation, and discusses models and methods that are relevant to NGA's mission.
The coastal zone is of enormous importance to the well-being of the nation, as our lives and economy are inextricably linked to the features and activities that occur within this dynamic region. In order to understand and address the effects of natural and anthropogenic forces in the coastal zone, a holistic multidisciplinary framework is required to account for the interconnectivity of processes within the system. The foundation of this framework is accurate geospatial informationâ€"information that is depicted on maps and charts. A Geospatial Framework for the Coastal Zone National Needs identifies and suggests mechanisms for addressing national needs for spatial information in the coastal zone. It identifies high priority needs, evaluates the potential for meeting those needs based on the current level of effort, and suggests steps to increase collaboration and ensure that the nation's need for spatial information in the coastal zone is met in an efficient and timely manner.
Research Opportunities in Geography at the U.S. Geological Survey (USGS) provides perspective and guidance to the geography discipline about its future research and strategic directions. The book makes specific recommendations about scientific research priorities and partnerships within and outside the agency, and outlines a long-term core research agenda for the USGS.
A grand challenge for science is to understand the human implications of global environmental change and to help society cope with those changes. Virtually all the scientific questions associated with this challenge depend on geospatial information (geoinformation) and on the ability of scientists, working individually and in groups, to interact with that information in flexible and increasingly complex ways. Another grand challenge is how to respond to calamities-terrorist activities, other human-induced crises, and natural disasters. Much of the information that underpins emergency preparedness, response, recovery, and mitigation is geospatial in nature. In terrorist situations, for example, origins and destinations of phone calls and e-mail messages, travel patterns of individuals, dispersal patterns of airborne chemicals, assessment of places at risk, and the allocation of resources all involve geospatial information. Much of the work addressing environment- and emergency-related concerns will depend on how productively humans are able to integrate, distill, and correlate a wide range of seemingly unrelated information. In addition to critical advances in location-aware computing, databases, and data mining methods, advances in the human-computer interface will couple new computational capabilities with human cognitive capabilities. This report outlines an interdisciplinary research roadmap at the intersection of computer science and geospatial information science. The report was developed by a committee convened by the Computer Science and Telecommunications Board of the National Research Council.
The National Spatial Data Infrastructure (NSDI) was envisioned as a way of enhancing the accessibility, communication, and use of geospatial data to support a wide variety of decisions at all levels of society. The goals of the NSDI are to reduce redundancy in geospatial data creation and maintenance, reduce the costs of geospatial data creation and maintenance, improve access to geospatial data, and improve the accuracy of geospatial data used by the broader community. At the core of the NSDI is the concept of partnerships, or collaborations, between different agencies, corporations, institutions, and levels of government. In a previous report, the Mapping Science Committee (MSC) defined a partnership as "...a joint activity of federal and state agencies, involving one or more agencies as joint principals focusing on geographic information." The concept of partnerships was built on the foundation of shared responsibilities, shared costs, shared benefits, and shared control. Partnerships are designed to share the costs of creation and maintenance of geospatial data, seeking to avoid unnecessary duplication, and to make it possible for data collected by one agency at a high level of spatial detail to be used by another agency in more generalized form. Over the past seven years, a series of funding programs administered by the Federal Geographic Data Committee (FGDC) has stimulated the creation of such partnerships, and thereby promoted the objectives of the NSDI, by raising awareness of the need for a coordinated national approach to geospatial data creation, maintenance, and use. They include the NSDI Cooperative Agreements Program, the Framework Demonstration Projects Program, the Community Demonstration Projects, and the Community-Federal Information Partnerships proposal. This report assesses the success of the FGDC partnership programs that have been established between the federal government and state and local government, industry, and academic communities in promoting the objectives of the National Spatial Data Infrastructure.
Basic Research Opportunities in Earth Science identifies areas of high-priority research within the purview of the Earth Science Division of the National Science Foundation, assesses cross-disciplinary connections, and discusses the linkages between basic research and societal needs. Opportunities in Earth science have been opened up by major improvements in techniques for reading the geological record of terrestrial change, capabilities for observing active processes in the present-day Earth, and computational technologies for realistic simulations of dynamic geosystems. This book examines six specific areas in which the opportunities for basic research are especially compelling, including integrative studies of the near-surface environment (the "Critical Zone"); geobiology; Earth and planetary materials; investigations of the continents; studies of Earth's deep interior; and planetary science. It concludes with a discussion of mechanisms for exploiting these research opportunities, including EarthScope, natural laboratories, and partnerships.
The report describes potential applications of geographic information systems (GIS) and spatial analysis by HUD's Office of Policy Development and Research for understanding housing needs, addressing broader issues of urban poverty and community development, and improving access to information and services by the many users of HUD's data. It offers a vision of HUD as an important player in providing urban data to federal initiatives towards a spatial data infrastructure for the nation.
Cooperation and partnerships for spatial data activities among the federal government, state and local governments, and the private sector will be essential for the development of a robust National Spatial Data Infrastructure (NSDI). This book addresses the nature of these partnerships and examines factors that could optimize their success.
The central purpose of all research is to create new knowledge. In the geographical sciences this is driven by a desire to create new knowledge about the relations between space, place, and the anthropogenic and non-anthropogenic features and processes of the Earth. But some research goes beyond these modest aims and creates new opportunities for further research, or affects the process of knowledge acquisition more broadly, or changes the way other researchers in a domain think about the world and go about their business. Due to its positive impacts, transformative research can be regarded as inherently having greater value than more conventional research, and funding agencies clearly regard transformative research as something to be encouraged and funded through special programs. Assessments of transformative research funding initiatives are few and provide a mixed picture of their effectiveness. The challenge is whether transformative research can be identified at the time it is proposed rather than after it has been conducted, communicated, and its influence on the discipline has become clear. Fostering Transformative Research in the Geographical Sciences reviews how transformative research has emerged in the past, what its early markers were, and makes recommendations for how it can be nurtured in the future.
The National Spatial Data Infrastructure (NSDI) is the means to assemble geographic information that describes the arrangement and attributes of features and phenomena on the Earth. This book advocates the need to make the NSDI more robust. The infrastructure includes the materials, technology, and people necessary to acquire, process, store, and distribute such information to meet a wide variety of needs. The NSDI is more than hardware, software, and data; it is the public foundation on which a marketplace for spatial products will evolve.
Understanding the effects of natural and human-induced changes on the global environment and their implications requires a foundation of integrated observations of land, sea, air and space, on which to build credible information products, forecast models, and other tools for making informed decisions. The 2007 National Research Council report on decadal survey called for a renewal of the national commitment to a program of Earth observations in which attention to securing practical benefits for humankind plays an equal role with the quest to acquire new knowledge about the Earth system. NASA responded favorably and aggressively to this survey, embracing its overall recommendations for Earth observations, missions, technology investments, and priorities for the underlying science. As a result, the science and applications communities have made significant progress over the past 5 years. However, the Committee on Assessment of NASA's Earth Science Program found that the survey vision is being realized at a far slower pace than was recommended, principally because the required budget was not achieved. Exacerbating the budget shortfalls, NASA Earth science programs experienced launch failures and delays and the cost of implementing missions increased substantially as a result of changes in mission scope, increases in launch vehicle costs and/or the lack of availability of a medium-class launch vehicle, under-estimation of costs by the decadal survey, and unfunded programmatic changes that were required by Congress and the Office of Management and Budget. In addition, the National Oceanic and Atmospheric Administration (NOAA) has made significant reductions in scope to its future Earth environmental observing satellites as it contends with budget shortfalls. Earth Science and Applications from Space: A Midterm Assessment of NASA's Implementation of the Decadal Survey recommends a number of steps to better manage existing programs and to implement future programs that will be recommended by the next decadal survey. The report also highlights the urgent need for the Executive Branch to develop and implement an overarching multiagency national strategy for Earth observations from space, a key recommendation of the 2007 decadal survey that remains unfulfilled.
The National Spatial Data Infrastructure (NSDI) was envisioned as a way of enhancing the accessibility, communication, and use of geospatial data to support a wide variety of decisions at all levels of society. The goals of the NSDI are to reduce redundancy in geospatial data creation and maintenance, reduce the costs of geospatial data creation and maintenance, improve access to geospatial data, and improve the accuracy of geospatial data used by the broader community. At the core of the NSDI is the concept of partnerships, or collaborations, between different agencies, corporations, institutions, and levels of government. In a previous report, the Mapping Science Committee (MSC) defined a partnership as "...a joint activity of federal and state agencies, involving one or more agencies as joint principals focusing on geographic information." The concept of partnerships was built on the foundation of shared responsibilities, shared costs, shared benefits, and shared control. Partnerships are designed to share the costs of creation and maintenance of geospatial data, seeking to avoid unnecessary duplication, and to make it possible for data collected by one agency at a high level of spatial detail to be used by another agency in more generalized form. Over the past seven years, a series of funding programs administered by the Federal Geographic Data Committee (FGDC) has stimulated the creation of such partnerships, and thereby promoted the objectives of the NSDI, by raising awareness of the need for a coordinated national approach to geospatial data creation, maintenance, and use. They include the NSDI Cooperative Agreements Program, the Framework Demonstration Projects Program, the Community Demonstration Projects, and the Community-Federal Information Partnerships proposal. This report assesses the success of the FGDC partnership programs that have been established between the federal government and state and local government, industry, and academic communities in promoting the objectives of the National Spatial Data Infrastructure.
Science at the U.S. Geological Survey (USGS) is intrinsically global, and from early in its history, the USGS has successfully carried out international projects that serve U.S. national interests and benefit the USGS domestic mission. Opportunities abound for the USGS to strategically pursue international science in the next 5-10 years that bears on growing worldwide problems having direct impact on the United States-climate and ecosystem changes, natural disasters, the spread of invasive species, and diminishing natural resources, to name a few. Taking a more coherent, proactive agency approach to international science-and building support for international projects currently in progress-would help the USGS participate in international science activities more effectively.
The Earth system functions and connects in unexpected ways - from the microscopic interactions of bacteria and rocks to the macro-scale processes that build and erode mountains and regulate Earth's climate. Efforts to study Earth's intertwined processes are made even more pertinent and urgent by the need to understand how the Earth can continue to sustain both civilization and the planet's biodiversity. A Vision for NSF Earth Sciences 2020-2030: Earth in Time provides recommendations to help the National Science Foundation plan and support the next decade of Earth science research, focusing on research priorities, infrastructure and facilities, and partnerships. This report presents a compelling and vibrant vision of the future of Earth science research.
While NASA Earth Science missions are planned on the basis of a specified lifetime, often they are able to function beyond the end of that period. Until recently NASA had no formal mechanism for determining whether those missions should be extended or whether the resources necessary for the extension should be applied to new missions. In August 2004, when NASA merged Earth and space sciences, the agency began using the Science Review process to make those extension determinations. NASA had asked the NRC to assess extension review processes, and after the merger, this study focused on the Science Review process. This report presents an assessment of that process and provides recommendations for adapting it to Earth Science missions.
Satellite Observations to Benefit Science and Society: Recommended Missions for the Next Decade brings the next ten years into focus for the Earth and environmental science community with a prioritized agenda of space programs, missions, and supporting activities that will best serve scientists in the next decade. These missions will address a broad range of societal needs, such as more reliable weather forecasts, early earthquake warnings, and improved pollution management, benefiting both scientific discovery and the health and well-being of society. Based on the 2007 book, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, this book explores each of the seventeen recommended missions in detail, identifying launch dates, responsible agencies, estimated cost, scientific and public benefits, and more. Printed entirely in color, the book features rich photographs and illustrations, tables, and graphs that will keep the attention of scientists and non-scientists alike.
The 2001 National Research Council (NRC) report Basic Research Opportunities in Earth Science (BROES) described how basic research in the Earth sciences serves five national imperatives: (1) discovery, use, and conservation of natural resources; (2) characterization and mitigation of natural hazards; (3) geotechnical support of commercial and infrastructure development; (4) stewardship of the environment; and (5) terrestrial surveillance for global security and national defense. This perspective is even more pressing today, and will persist into the future, with ever-growing emphasis. Today's world-with headlines dominated by issues involving fossil fuel and water resources, earthquake and tsunami disasters claiming hundreds of thousands of lives and causing hundreds of billions of dollars in damages, profound environmental changes associated with the evolving climate system, and nuclear weapons proliferation and testing-has many urgent societal issues that need to be informed by sound understanding of the Earth sciences. A national strategy to sustain basic research and training of expertise across the full spectrum of the Earth sciences is motivated by these national imperatives. New Research Opportunities in the Earth Sciences identifies new and emerging research opportunities in the Earth sciences over the next decade, including surface and deep Earth processes and interdisciplinary research with fields such as ocean and atmospheric sciences, biology, engineering, computer science, and social and behavioral sciences. The report also identifies key instrumentation and facilities needed to support these new and emerging research opportunities. The report describes opportunities for increased cooperation in these new and emerging areas between EAR and other government agency programs, industry, and international programs, and suggests new ways that EAR can help train the next generation of Earth scientists, support young investigators, and increase the participation of underrepresented groups in the field.
In 1972 NASA launched the Earth Resources Technology Satellite (ETRS), now known as Landsat 1, and on February 11, 2013 launched Landsat 8. Currently the United States has collected 40 continuous years of satellite records of land remote sensing data from satellites similar to these. Even though this data is valuable to improving many different aspects of the country such as agriculture, homeland security, and disaster mitigation; the availability of this data for planning our nation\'s future is at risk. Thus, the Department of the Interior\'s (DOI\'s) U.S. Geological Survey (USGS) requested that the National Research Council\'s (NRC\'s) Committee on Implementation of a Sustained Land Imaging Program review the needs and opportunities necessary for the development of a national space-based operational land imaging capability. The committee was specifically tasked with several objectives including identifying stakeholders and their data needs and providing recommendations to facilitate the transition from NASA\'s research-based series of satellites to a sustained USGS land imaging program. Landsat and Beyond: Sustaining and Enhancing the Nation's Land Imaging Program is the result of the committee\'s investigation. This investigation included meetings with stakeholders such as the DOI, NASA, NOAA, and commercial data providers. The report includes the committee\'s recommendations, information about different aspects of the program, and a section dedicated to future opportunities.
Principal-investigator (PI) Earth science missions are small, focused science projects involving relatively small spacecraft. The selected PI is responsible for the scientific and programmatic success of the entire project. A particular objective of PI-led missions has been to help develop university-based research capacity. Such missions, however, pose significant challenges that are beyond the capabilities of most universities to manage. To help NASA's Office of Earth Science determine how best to address these, the NRC carried out an assessment of key issues relevant to the success of university-based PI-led Earth observation missions. This report presents the result of that study. In particular, the report provides an analysis of opportunities to enhance such missions and recommendations about whether and, if so, how they should be used to build university-based research capabilities.
This is the second of two Space Studies Board reports that address the complex issue of incorporating the needs of climate research into the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS, which has been driven by the imperative of reliably providing short-term weather information, is itself a union of heretofore separate civilian and military programs. It is a marriage of convenience to eliminate needless duplication and reduce cost, one that appears to be working. The same considerations of expediency and economy motivate the present attempts to add to NPOESS the goals of climate research. The technical complexities of combining seemingly disparate requirements are accompanied by the programmatic complexities of forging further connections among three different agencies, with different mandates, cultures, and congressional appropriators. Yet the stakes are very high, and each agency gains significantly by finding ways to cooperate, as do the taxpayers. Beyond cost savings, benefits include the possibility that long-term climate observations will reveal new phenomena of interest to weather forecasters, as happened with the El Niño/Southern Oscillation. Conversely, climate researchers can often make good use of operational data. Necessity is the mother of invention, and the needs of all the parties involved in NPOESS should conspire to foster creative solutions to make this effort work. Although it has often been said that research and operational requirements are incommensurate, this report and the phase one report (Science and Design) accentuate the degree to which they are complementary and could be made compatible. The reports provide guidelines for achieving the desired integration to the mutual benefit of all parties. Although a significant level of commitment will be needed to surmount the very real technical and programmatic impediments, the public interest would be well served by a positive outcome.
In its report into how priorities are set for publicly funded research, the Science and Technology Committee calls on the Government to make a clear and unambiguous statement setting out their research funding commitments and the periods of time over which those commitments apply.
Degradation of the nation's water resources threatens the health of humans and the functioning of natural ecosystems. To help better understand the causes of these adverse impacts and how they might be more effectively mitigated, especially in urban and human-stressed aquatic systems, the National Science Foundation (NSF) has proposed the establishment of a Collaborative Large-scale Engineering Analysis Network for Environmental Research (CLEANER). This program would provide a platform for near-real-time and conventional data collection and analysis; improve understanding and prediction of processes controlling large-scale environmental and hydrologic systems; help explain human-induced impacts on the environment; and help identify more effective adaptive management approaches to mitigate adverse impacts of human activities on water and land resources. At NSF's request, the National Academies undertook a review this proposed program. The resultant report recommends that NSF proceed with its planning, implementation, and intra- and interagency coordination activities for the program, as a successful environmental observatory network could transform the environmental engineering profession and increase its already considerable contributions to society.
Currently, the Departments of Defense (DOD) and Commerce (DOC) acquire and operate separate polarorbiting environmental satellite systems that collect data needed for military and civil weather forecasting. The National Performance Review (NPR) and subsequent Presidential Decision Directive (PDD), directed the DOD (Air Force) and the DOC (National Oceanic and Atmospheric Administration, NOAA) to establish a converged national weather satellite program that would meet U.S. civil and national security requirements and fulfill international obligations. NASA's Earth Observing System (EOS), and potentially other NASA programs, were included in the converged program to provide new remote sensing and spacecraft technologies that could improve the operational capabilities of the converged system. The program that followed, called the National Polar-orbiting Operational Environmental Satellite System (NPOESS), combined the follow-on to the DOD's Defense Meteorological Satellite Program and the DOC's Polar-orbiting Operational Environmental Satellite (POES) program. The tri-agency Integrated Program Office (IPO) for NPOESS was subsequently established to manage the acquisition and operations of the converged satellite. Issues in the Integration of Research and Operational Satellite Systems for Climate Research analyzes issues related to the integration of EOS and NPOESS, especially as they affect research and monitoring activities related to Earth's climate and whether it is changing.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.