The Committee on Astrobiology and Planetary Sciences of the National Academies of Sciences, Engineering, and Medicine is tasked with monitoring the progress in implementation of the recommendations of the most recent planetary science decadal survey, Vision and Voyages for Planetary Science in the Decade 2013-2022. Planetary science decadal surveys evaluate the state of the field, identify the most important scientific questions and themes, and prioritize missions and activities for the decade in question based on scientific merit, technical feasibility, and anticipated cost. The need for careful monitoring is underscored by the fact that some of the decadal survey's recommendations are triggered at specific programmatic decision points. Options for the Fifth New Frontiers Announcement of Opportunity addresses one such decision point. For each of the following four New Frontiers targets: Ocean Worlds, Trojan Tour and Rendezvous, Io Observer and Lunar Geophysical, this report summarizes changes in scientific understanding or external factors since the release of Vision and Voyages or its midterm review and considers whether those changes have been sufficiently substantial to warrant reconsideration of the four targets for inclusion in the New Frontiers 5 announcement of opportunity, scheduled for release in early 2022.
This study discusses the publicly available studies of future flagship- and New Frontiers-class missions NASA initiated since the completion of Vision and Voyages. The report considers the priority areas as defined in Vision and Voyages where publicly available mission studies have not been undertaken; appropriate mechanisms by which mission-study gaps might be filled in the near- to mid-term future; and other activities that might be undertaken in the near- to mid-term future to optimize and/or expedite the work of the next planetary science decadal survey committee.
The Committee on Astrobiology and Planetary Sciences of the National Academies of Sciences, Engineering, and Medicine is tasked with monitoring the progress in implementation of the recommendations of the most recent planetary science decadal survey, Vision and Voyages for Planetary Science in the Decade 2013-2022. Planetary science decadal surveys evaluate the state of the field, identify the most important scientific questions and themes, and prioritize missions and activities for the decade in question based on scientific merit, technical feasibility, and anticipated cost. The need for careful monitoring is underscored by the fact that some of the decadal survey's recommendations are triggered at specific programmatic decision points. Options for the Fifth New Frontiers Announcement of Opportunity addresses one such decision point. For each of the following four New Frontiers targets: Ocean Worlds, Trojan Tour and Rendezvous, Io Observer and Lunar Geophysical, this report summarizes changes in scientific understanding or external factors since the release of Vision and Voyages or its midterm review and considers whether those changes have been sufficiently substantial to warrant reconsideration of the four targets for inclusion in the New Frontiers 5 announcement of opportunity, scheduled for release in early 2022.
The Research and Analysis (R&A) program managed by NASA's Planetary Science Division (PSD), supports a broad range of planetary science activities, including the analysis of data from past and current spacecraft; laboratory research; theoretical, modeling, and computational studies; geological and astrobiological fieldwork in planetary analog environments on Earth; geological mapping of planetary bodies; analysis of data from Earth- and space-based telescopes; and development of flight instruments and technology needed for future planetary science missions. The primary role of the PSD R&A program is to address NASA's strategic objective for planetary science and PSD's science goals. Recently, PSD reorganized the R&A program to provide better alignment with the strategic goals for planetary sciences. The major changes in the R&A program involved consolidating a number of prior program elements, many of which were organized by subdiscipline, into a smaller number of thematic core research program elements. Despite numerous efforts by PSD to communicate the rationale for the reorganization and articulate clearly the new processes, there has been significant resistance from the planetary science community and concerns in some sectors regarding the major realignment of funding priorities. Review of NASA's Planetary Science Division's Restructured Research and Analysis Programs examines the new R&A program and determines if it appropriately aligns with the agency's strategic goals, supports existing flight programs, and enables future missions. This report explores whether any specific research areas or subdisciplinary groups that are critical to NASA's strategic objectives for planetary science and PSD's science goals are not supported appropriately in the current program or have been inadvertently disenfranchised through the reorganization.
Astrobiology is the study of the origin, evolution, distribution, and future of life in the universe. It is an inherently interdisciplinary field that encompasses astronomy, biology, geology, heliophysics, and planetary science, including complementary laboratory activities and field studies conducted in a wide range of terrestrial environments. Combining inherent scientific interest and public appeal, the search for life in the solar system and beyond provides a scientific rationale for many current and future activities carried out by the National Aeronautics and Science Administration (NASA) and other national and international agencies and organizations. Requested by NASA, this study offers a science strategy for astrobiology that outlines key scientific questions, identifies the most promising research in the field, and indicates the extent to which the mission priorities in existing decadal surveys address the search for life's origin, evolution, distribution, and future in the universe. This report makes recommendations for advancing the research, obtaining the measurements, and realizing NASA's goal to search for signs of life in the universe.
The past decade has seen a remarkable revolution in genomic research, the discoveries of extreme environments in which organisms can live and even flourish on Earth, the identification of past and possibly present liquid-water environments in our solar system, and the detection of planets around other stars. Together these accomplishments bring us much closer to understanding the origin of life, its evolution and diversification on Earth, and its occurrence and distribution in the cosmos. A new multidisciplinary program called Astrobiology was initiated in 1997 by the National Aeronautics and Space Administration (NASA) to foster such research and to make available additional resources for individual and consortium-based efforts. Other agencies have also begun new programs to address the origin, evolution, and cosmic distribution of life. Five years into the Astrobiology program, it is appropriate to assess the scientific and programmatic impacts of these initiatives. Edward J. Weiler, NASA's associate administrator for the Office of Space Science, tasked the Committee on the Origins and Evolution of Life (COEL) with assessing the state of NASA's Astrobiology program.
In recent years, planetary science has seen a tremendous growth in new knowledge. Deposits of water ice exist at the Moon's poles. Discoveries on the surface of Mars point to an early warm wet climate, and perhaps conditions under which life could have emerged. Liquid methane rain falls on Saturn's moon Titan, creating rivers, lakes, and geologic landscapes with uncanny resemblances to Earth's. Vision and Voyages for Planetary Science in the Decade 2013-2022 surveys the current state of knowledge of the solar system and recommends a suite of planetary science flagship missions for the decade 2013-2022 that could provide a steady stream of important new discoveries about the solar system. Research priorities defined in the report were selected through a rigorous review that included input from five expert panels. NASA's highest priority large mission should be the Mars Astrobiology Explorer Cacher (MAX-C), a mission to Mars that could help determine whether the planet ever supported life and could also help answer questions about its geologic and climatic history. Other projects should include a mission to Jupiter's icy moon Europa and its subsurface ocean, and the Uranus Orbiter and Probe mission to investigate that planet's interior structure, atmosphere, and composition. For medium-size missions, Vision and Voyages for Planetary Science in the Decade 2013-2022 recommends that NASA select two new missions to be included in its New Frontiers program, which explores the solar system with frequent, mid-size spacecraft missions. If NASA cannot stay within budget for any of these proposed flagship projects, it should focus on smaller, less expensive missions first. Vision and Voyages for Planetary Science in the Decade 2013-2022 suggests that the National Science Foundation expand its funding for existing laboratories and establish new facilities as needed. It also recommends that the program enlist the participation of international partners. This report is a vital resource for government agencies supporting space science, the planetary science community, and the public.
Three recent developments have greatly increased interest in the search for life on Mars. The first is new information about the Martian environment including evidence of a watery past and the possibility of atmospheric methane. The second is the possibility of microbial viability on Mars. Finally, the Vision for Space Exploration initiative included an explicit directive to search for the evidence of life on Mars. These scientific and political developments led NASA to request the NRC's assistance in formulating an up-to-date integrated astrobiology strategy for Mars exploration. Among other topics, this report presents a review of current knowledge about possible life on Mars; an astrobiological assessment of current Mars missions; a review of Mars-mission planetary protection; and findings and recommendations. The report notes that the greatest increase in understanding of Mars will come from the collection and return to Earth of a well-chosen suite of Martian surface materials.
Astrobiology is the study of the origin, evolution, distribution, and future of life in the universe. It is an inherently interdisciplinary field that encompasses astronomy, biology, geology, heliophysics, and planetary science, including complementary laboratory activities and field studies conducted in a wide range of terrestrial environments. Combining inherent scientific interest and public appeal, the search for life in the solar system and beyond provides a scientific rationale for many current and future activities carried out by the National Aeronautics and Science Administration (NASA) and other national and international agencies and organizations. Requested by NASA, this study offers a science strategy for astrobiology that outlines key scientific questions, identifies the most promising research in the field, and indicates the extent to which the mission priorities in existing decadal surveys address the search for life's origin, evolution, distribution, and future in the universe. This report makes recommendations for advancing the research, obtaining the measurements, and realizing NASA's goal to search for signs of life in the universe.
In this new book, a distinguished panel makes recommendations for the nation's programs in astronomy and astrophysics, including a number of new initiatives for observing the universe. With the goal of optimum value, the recommendations address the role of federal research agencies, allocation of funding, training for scientists, competition and collaboration among space facilities, and much more. The book identifies the most pressing science questions and explains how specific efforts, from the Next Generation Space Telescope to theoretical studies, will help reveal the answers. Discussions of how emerging information technologies can help scientists make sense of the wealth of data available are also included. Astronomy has significant impact on science in general as well as on public imagination. The committee discusses how to integrate astronomical discoveries into our education system and our national life. In preparing the New Millennium report, the AASC made use of a series of panel reports that address various aspects of ground- and space-based astronomy and astrophysics. These reports provide in-depth technical detail. Astronomy and Astrophysics in the New Millenium: An Overview summarizes the science goals and recommended initiatives in a short, richly illustrated, non-technical booklet.
Astrobiology is a scientific discipline devoted to the study of life in the universe - its origin, evolution, distribution, and future. In 1997, NASA established an Astrobiology program (the NASA Astrobiology Institute - NAI) as a result of a series of new results from solar system exploration and astronomical research in the mid-1990s together with advances in the biological sciences. To help evaluate the NAI, NASA asked the NRC to review progress made by the Institute in developing the field of astrobiology. This book presents an evaluation of NAI's success in meeting its goals for fostering interdisciplinary research, training future astrobiology researchers, providing scientific and technical leadership, exploring new research approaches with information technology, and supporting outreach to K-12 education programs.
In spring 2011 the National Academies of Sciences, Engineering, and Medicine produced a report outlining the next decade in planetary sciences. That report, titled Vision and Voyages for Planetary Science in the Decade 2013-2022, and popularly referred to as the "decadal survey," has provided high-level prioritization and guidance for NASA's Planetary Science Division. Other considerations, such as budget realities, congressional language in authorization and appropriations bills, administration requirements, and cross-division and cross-directorate requirements (notably in retiring risk or providing needed information for the human program) are also necessary inputs to how NASA develops its planetary science program. In 2016 NASA asked the National Academies to undertake a study assessing NASA's progress at meeting the objectives of the decadal survey. After the study was underway, Congress passed the National Aeronautics and Space Administration Transition Authorization Act of 2017 which called for NASA to engage the National Academies in a review of NASA's Mars Exploration Program. NASA and the Academies agreed to incorporate that review into the midterm study. That study has produced this report, which serves as a midterm assessment and provides guidance on achieving the goals in the remaining years covered by the decadal survey as well as preparing for the next decadal survey, currently scheduled to begin in 2020.
In 1997, the National Aeronautics and Space Administration (NASA) formed the National Astrobiology Institute to coordinate and fund research into the origins, distribution, and fate of life in the universe. A 2002 NRC study of that program, Life in the Universe: An Assessment of U.S. and International Programs in Astrobiology, raised a number of concerns about the Astrobiology program. In particular, it concluded that areas of astrophysics related to the astronomical environment in which life arose on earth were not well represented in the program. In response to that finding, the Space Studies Board requested the original study committee, the Committee on the Origins and Evolution of Life, to examine ways to augment and integrate astronomy and astrophysics into the Astrobiology program. This report presents the results of that study. It provides a review of the earlier report and related efforts, a detailed examination of the elements of the astrobiology program that would benefit from greater integration and augmentation of astronomy and astrophysics, and an assessment of ways to facilitate the integration of astronomy with other astrobiology disciplines.
The newly constituted Committee on Solar and Space Physics (CSSP) has been tasked with monitoring the progress of recommendations from the 2013 decadal survey Solar and Space Physics: A Science for a Technological Society. The committee held its first meeting as part of Space Science Week in Washington, D.C., on March 28-30, 2017. In advance of the meeting, and in response to discussions with the leadership of the Heliophysics Division of the National Aeronautics and Space Administration (NASA) and the Geospace Section of the National Science Foundation (NSF) Division of Atmospheric and Geospace Science, the committee identified the decadal survey's recommendation to create NASA-NSF heliophysics science centers (HSCs) as a timely topic for discussion. This report provides a set of options for NASA and NSF to consider for the creation of HSCs, including how to make the HSCs unique from other research elements and strategies for implementation.
Protecting Earth's environment and other solar system bodies from harmful contamination has been an important principle throughout the history of space exploration. For decades, the scientific, political, and economic conditions of space exploration converged in ways that contributed to effective development and implementation of planetary protection policies at national and international levels. However, the future of space exploration faces serious challenges to the development and implementation of planetary protection policy. The most disruptive changes are associated with (1) sample return from, and human missions to, Mars; and (2) missions to those bodies in the outer solar system possessing water oceans beneath their icy surfaces. Review and Assessment of Planetary Protection Policy Development Processes addresses the implications of changes in the complexion of solar system exploration as they apply to the process of developing planetary protection policy. Specifically, this report examines the history of planetary protection policy, assesses the current policy development process, and recommends actions to improve the policy development process in the future.
NASA's space and Earth science program is composed of two principal components: spaceflight projects and mission-enabling activities. Most of the budget of NASA's Science Mission Directorate (SMD) is applied to spaceflight missions, but NASA identifies nearly one quarter of the SMD budget as "mission enabling." The principal mission-enabling activities, which traditionally encompass much of NASA's research and analysis (R&A) programs, include support for basic research, theory, modeling, and data analysis; suborbital payloads and flights and complementary ground-based programs; advanced technology development; and advanced mission and instrumentation concept studies. While the R&A program is essential to the development and support of NASA's diverse set of space and Earth science missions, defining and articulating an appropriate scale for mission-enabling activities have posed a challenge throughout NASA's history. This volume identifies the appropriate roles for mission-enabling activities and metrics for assessing their effectiveness. Furthermore, the book evaluates how, from a strategic perspective, decisions should be made about balance between mission-related and mission-enabling elements of the overall program as well as balance between various elements within the mission-enabling component. Collectively, these efforts will help SMD to make a good program even better.
An international consensus policy to prevent the biological cross-contamination of planetary bodies exists and is maintained by the Committee on Space Research (COSPAR) of the International Council for Science, which is consultative to the United Nations Committee on the Peaceful Uses of Outer Space. Currently, COSPAR's planetary protection policy does not specify the status of sample-return missions from Phobos or Deimos, the moons of Mars. Although the moons themselves are not considered potential habitats for life or of intrinsic relevance to prebiotic chemical evolution, recent studies indicate that a significant amount of material recently ejected from Mars could be present on the surface of Phobos and, to a lesser extent, Deimos. This report reviews recent theoretical, experimental, and modeling research on the environments and physical conditions encountered by Mars ejecta during certain processes. It recommends whether missions returning samples from Phobos and/or Deimos should be classified as "restricted" or "unrestricted" Earth return in the framework of the planetary protection policy maintained by COSPAR. This report also considers the specific ways the classification of sample return from Deimos is a different case than sample return from Phobos.
When the space exploration initiative was announced, Congress asked the NRC to review the science NASA proposed to carryout under the initiative. It also asked the NRC to assess whether this program would provide balanced scientific research across the established disciplines supported by NASA in addition to supporting the new initiative. In 2005, the NRC released three studies focusing on a portion of that task, but changes at NASA forced the postponement of the last phase. This report presents that last phase with an assessment of the health of the NASA scientific disciplines under the budget requests imposed by the exploration initiative. The report also provides an analysis of whether the science budget appropriately reflects cross-disciplinary scientific priorities.
Solar system exploration is in an extraordinary state of expansion. Scientific capabilities to search for evidence of extant or relic life outside Earthâ€"among the principal goals of solar system explorationâ€"are advancing rapidly. In this time of rapid transition in exploring solar system bodies, the importance of reexamining planetary protection policies, including the need for clarity in how NASA establishes such policies, has become more urgent. Overall, this study seeks to review the current state of planetary protection policy development, assess the responsiveness of the policy development process to contemporary and anticipated needs, and recommend actions that might assure the effectiveness of NASA's future coordination and execution of planetary protection. This interim report focuses on the goals of and rationales for planetary protection policies and suggests a working definition of planetary protection consistent with those goals. It does not address future commercial planetary missions, human missions to planetary bodies, or roles and responsibilities for implementing policies, but these issues will be addressed in the final report.
The past decade has delivered remarkable discoveries in the study of exoplanets. Hand-in-hand with these advances, a theoretical understanding of the myriad of processes that dictate the formation and evolution of planets has matured, spurred on by the avalanche of unexpected discoveries. Appreciation of the factors that make a planet hospitable to life has grown in sophistication, as has understanding of the context for biosignatures, the remotely detectable aspects of a planet's atmosphere or surface that reveal the presence of life. Exoplanet Science Strategy highlights strategic priorities for large, coordinated efforts that will support the scientific goals of the broad exoplanet science community. This report outlines a strategic plan that will answer lingering questions through a combination of large, ambitious community-supported efforts and support for diverse, creative, community-driven investigator research.
The Earth system functions and connects in unexpected ways - from the microscopic interactions of bacteria and rocks to the macro-scale processes that build and erode mountains and regulate Earth's climate. Efforts to study Earth's intertwined processes are made even more pertinent and urgent by the need to understand how the Earth can continue to sustain both civilization and the planet's biodiversity. A Vision for NSF Earth Sciences 2020-2030: Earth in Time provides recommendations to help the National Science Foundation plan and support the next decade of Earth science research, focusing on research priorities, infrastructure and facilities, and partnerships. This report presents a compelling and vibrant vision of the future of Earth science research.
Cost and schedule growth is a problem experienced by many types of projects in many fields of endeavor. Based on prior studies of cost growth in NASA and Department of Defense projects, this book identifies specific causes of cost growth associated with NASA Earth and space science missions and provides guidance on how NASA can overcome these specific problems. The recommendations in this book focus on changes in NASA policies that would directly reduce or eliminate the cost growth of Earth and space science missions. Large cost growth is a concern for Earth and space science missions, and it can be a concern for other missions as well. If the cost growth is large enough, it can create liquidity problems for NASA's Science Mission Directorate that in turn cause cost profile changes and development delays that amplify the overall cost growth for other concurrent and/or pending missions. Addressing cost growth through the allocation of artificially high reserves is an inefficient use of resources because it unnecessarily diminishes the portfolio of planned flights. The most efficient use of resources is to establish realistic budgets and reserves and effective management processes that maximize the likelihood that mission costs will not exceed reserves. NASA is already taking action to reduce cost growth; additional steps, as recommended herein, will help improve NASA's mission planning process and achieve the goal of ensuring frequent mission opportunities for NASA Earth and space science.
Through an examination of case studies, agency briefings, and existing reports, and drawing on personal knowledge and direct experience, the Committee on Assessment of Impediments to Interagency Cooperation on Space and Earth Science Missions found that candidate projects for multiagency collaboration in the development and implementation of Earth-observing or space science missions are often intrinsically complex and, therefore costly, and that a multiagency approach to developing these missions typically results in additional complexity and cost. Advocates of collaboration have sometimes underestimated the difficulties and associated costs and risks of dividing responsibility and accountability between two or more partners; they also discount the possibility that collaboration will increase the risk in meeting performance objectives. This committee's principal recommendation is that agencies should conduct Earth and space science projects independently unless: It is judged that cooperation will result in significant added scientific value to the project over what could be achieved by a single agency alone; or Unique capabilities reside within one agency that are necessary for the mission success of a project managed by another agency; or The project is intended to transfer from research to operations necessitating a change in responsibility from one agency to another during the project; or There are other compelling reasons to pursue collaboration, for example, a desire to build capacity at one of the cooperating agencies. Even when the total project cost may increase, parties may still find collaboration attractive if their share of a mission is more affordable than funding it alone. In these cases, alternatives to interdependent reliance on another government agency should be considered. For example, agencies may find that buying services from another agency or pursuing interagency coordination of spaceflight data collection is preferable to fully interdependent cooperation.
Space-based observations have transformed our understanding of Earth, its environment, the solar system and the universe at large. During past decades, driven by increasingly advanced science questions, space observatories have become more sophisticated and more complex, with costs often growing to billions of dollars. Although these kinds of ever-more-sophisticated missions will continue into the future, small satellites, ranging in mass between 500 kg to 0.1 kg, are gaining momentum as an additional means to address targeted science questions in a rapid, and possibly more affordable, manner. Within the category of small satellites, CubeSats have emerged as a space-platform defined in terms of (10 cm x 10 cm x 10 cm)- sized cubic units of approximately 1.3 kg each called "U's." Historically, CubeSats were developed as training projects to expose students to the challenges of real-world engineering practices and system design. Yet, their use has rapidly spread within academia, industry, and government agencies both nationally and internationally. In particular, CubeSats have caught the attention of parts of the U.S. space science community, which sees this platform, despite its inherent constraints, as a way to affordably access space and perform unique measurements of scientific value. The first science results from such CubeSats have only recently become available; however, questions remain regarding the scientific potential and technological promise of CubeSats in the future. Achieving Science with CubeSats reviews the current state of the scientific potential and technological promise of CubeSats. This report focuses on the platform's promise to obtain high- priority science data, as defined in recent decadal surveys in astronomy and astrophysics, Earth science and applications from space, planetary science, and solar and space physics (heliophysics); the science priorities identified in the 2014 NASA Science Plan; and the potential for CubeSats to advance biology and microgravity research. It provides a list of sample science goals for CubeSats, many of which address targeted science, often in coordination with other spacecraft, or use "sacrificial," or high-risk, orbits that lead to the demise of the satellite after critical data have been collected. Other goals relate to the use of CubeSats as constellations or swarms deploying tens to hundreds of CubeSats that function as one distributed array of measurements.
Planetary protection is a guiding principle in the design of an interplanetary mission, aiming to prevent biological contamination of both the target celestial body and the Earth. The protection of high-priority science goals, the search for life and the understanding of the Martian organic environment may be compromised if Earth microbes carried by spacecraft are grown and spread on Mars. This has led to the definition of Special Regions on Mars where strict planetary protection measures have to be applied before a spacecraft can enter these areas. At NASA's request, the community-based Mars Exploration Program Analysis Group (MEPAG) established the Special Regions Science Analysis Group (SR-SAG2) in October 2013 to examine the quantitative definition of a Special Region and proposed modifications to it, as necessary, based upon the latest scientific results. Review of the MEPAG Report on Mars Special Regions reviews the conclusions and recommendations contained in MEPAG's SR-SAG2 report and assesses their consistency with current understanding of both the Martian environment and the physical and chemical limits for the survival and propagation of microbial and other life on Earth. This report provides recommendations for an update of the planetary protection requirements for Mars Special Regions.
The National Research Council has conducted 11 decadal surveys in the Earth and space sciences since 1964 and released the latest four surveys in the past 8 years. The decadal surveys are notable in their ability to sample thoroughly the research interest, aspirations, and needs of a scientific community. Through a rigorous process, a primary survey committee and thematic panels of community members construct a prioritized program of science goals and objectives and define an executable strategy for achieving them. These reports play a critical role in defining the nation's agenda in that science area for the following 10 years, and often beyond. The Space Science Decadal Surveys considers the lessons learned from previous surveys and presents options for possible changes and improvements to the process, including the statement of task, advanced preparation, organization, and execution. This report discusses valuable aspects of decadal surveys that could taken further, as well as some challenges future surveys are likely to face in searching for the richest areas of scientific endeavor, seeking community consensus of where to go next, and planning how to get there. The Space Science Decadal Surveys describes aspects in the decadal survey prioritization process, including balance in the science program and across the discipline; balance between the needs of current researchers and the development of the future workforce; and balance in mission scale - smaller, competed programs versus large strategic missions.
The United States and the former Soviet Union have sent spacecraft to mars as early as 1966, with Mars' exploration being priority for NASA spacecraft. Both sides, however, have failed as well as succeed. The inability to determine if life exists on Mars is considered one of NASA's failures and undercut political support for additional Mars missions in the U.S. until the launch of the Mars Observer in 1992. Thus, the exploration of life on Mars continues, but with a new approach. Assessment of NASA's Mars Architecture, 2007-2016 is an assessment by the Committee to Review the Next Decade Mars Architecture of the National Research Council (NRC) conducted by request of Dr. Mary Cleave, NASA's Associate Administrator for the Science Mission Directorate. The Committee addresses the following questions: Is the Mars architecture reflective of the strategies, priorities, and guidelines put forward by the National Research Council's solar system exploration decadal survey and related science strategies and NASA plans?, Does the revised Mars architecture address the goals of NASA's Mars Exploration Program and optimize the science return, given the current fiscal posture of the program?, and Does the Mars architecture represent a reasonably balanced mission portfolio? After several months of study, consideration and incorporation of the guidance from NRC studies, especially New Frontiers in the Solar System, and the Vision for Space Exploration; community consultations via individual inputs; and a MEPAG-sponsored working group, a plan was created. This report includes the plan, which has an Astrobiology Field Laboratory or two Mild Rovers mission planned for 2016, recommendations from the committee, NRC guidelines for mars exploration, and more.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.