We in the United States have almost come to accept natural disasters as part of our nation's social fabric. News of property damage, economic and social disruption, and injuries follow earthquakes, fires, floods and hurricanes. Surprisingly, however, the total losses that follow these natural disasters are not consistently calculated. We have no formal system in either the public or private sector for compiling this information. The National Academies recommends what types of data should be assembled and tracked.
Landslides are a component of those agents of nature that transport rock and soil from mountains or hillsides to streams, lakes and seas, where new sedimentary rocks begin to form. Therefore, as well as destructive forces that can be induced by human activity, landslides are part of the earth's natural cyclic process of uplift, erosion, and sedimentation. With the growth of human population and the increasing habitation of ever-steeper slopes and higher altitudes, Man is both experiencing the effects of landslides and causing landslides with increasing frequency. These adverse effects include loss of life, injury, and damage to public and private works, as well as environmental damage. Accordingly, it is an opportune time to address the hazard posed by landslides, and to assess strategies to mitigate that hazard. Assessment of Proposed Partnerships to Implement a National Landslide Hazards Mitigation Strategy: Interim Reports is an interim statement addressing the U.S. Geological Survey's proposal for a national landslide hazards mitigation strategy. The scope of this interim report is constrained to assessing whether all the partners necessary for such a national strategy have been identified by the proposal-conclusions and recommendations to address the remainder of the statement of task will be presented in the committee's final report (e.g., will include comments regarding effective partnership implementation; funding strategies required for an effective mitigation program; and the balance between different components of a national strategy). In addition, in this interim report the committee offers a number of comments intended as interim guidance for the U.S. Geological Survey as it continues to plan a national strategy.
In response to HUD's request, the NRC assembled a panel of experts, the Committee for Oversight and Assessment of the Partnership for Advancing Technology in Housing, under the auspices of the Board on Infrastructure and the Constructed Environment. Over an initial term of three years, the committee was asked to review and comment on the following aspects of the PATH program: overall goals; proposed approach to meeting the goals and the likelihood of achieving them; and measurements of progress toward achieving the goals.
Information technology (IT) has the potential to play a critical role in managing natural and human-made disasters. Damage to communications infrastructure, along with other communications problems exacerbated the difficulties in carrying out response and recovery efforts following Hurricane Katrina. To assist government planning in this area, the Congress, in the E-government Act of 2002, directed the Federal Emergency Management Agency (FEMA) to request the NRC to conduct a study on the application of IT to disaster management. This report characterizes disaster management providing a framework for considering the range and nature of information and communication needs; presents a vision of the potential for IT to improve disaster management; provides an analysis of structural, organizational, and other non-technical barriers to the acquisition, adoption, and effective use of IT in disaster; and offers an outline of a research program aimed at strengthening IT-enabled capabilities for disaster management.
Across the United States, millions of acres of land have been so disturbed by human activities or severe climate events that significant portions of their native plant communities have been lost and their ecosystems have been seriously compromised. Restoring impaired ecosystems requires a supply of diverse native plant seeds that are well suited to the climates, soils, and other living species of the system. Native seeds are also in demand for applications in urban land management, roadside maintenance, conservation agriculture, and other restorative activities that take into account the connection between native plant communities and the increasingly urgent need for resilient landscapes. Given the varied climatic and environmental niches of the more than 17,000 native plant species of the United States, supplying the desired seed types and species mixes for this wide range of activities is a challenge. As the first phase of a nationwide analysis of the full scope of needs for native plant seeds, this interim report describes the participants in the native plant seed supply chain, makes preliminary observations, and proposes an information-gathering plan for the second phase of the assessment.
The U.S. Geological Survey (USGS) has adapted to the changing political, economic, and technical state of the nation and the world since it was established in the late nineteenth century. Over a period of more than 120 years, the USGS has evolved from a small group of scientists who collected data and provided guidance on how to parcel, manage, and use the public lands of the West to an agency comprised of thousands of scientists who conduct research and assessment activities on complex scientific issues at scales ranging from the local to the global. The USGS will no doubt continue to evolve and adapt to meet changing national needs. In fact, the recent integration of the National Biological Service and parts of the U.S. Bureau of Mines into the USGS presents an ideal opportunity to examine the agency's vision, mission, role, and scientific opportunities as the organization begins the early years of the twenty-first century. The USGS recognized the need to adapt to changing demands when it asked the National Research Council (NRC) to undertake this study. The NRC formed a multidisciplinary committee of 16 experts to address issues related to the future roles, challenges, and opportunities of the agency.
As geological threats become more imminent, society must make a major commitment to increase the resilience of its communities, infrastructure, and citizens. Recent earthquakes in Japan, New Zealand, Haiti, and Chile provide stark reminders of the devastating impact major earthquakes have on the lives and economic stability of millions of people worldwide. The events in Haiti continue to show that poor planning and governance lead to long-term chaos, while nations like Chile demonstrate steady recovery due to modern earthquake planning and proper construction and mitigation activities. At the request of the National Science Foundation, the National Research Council hosted a two-day workshop to give members of the community an opportunity to identify "Grand Challenges" for earthquake engineering research that are needed to achieve an earthquake resilient society, as well as to describe networks of earthquake engineering experimental capabilities and cyberinfrastructure tools that could continue to address ongoing areas of concern. Grand Challenges in Earthquake Engineering Research: A Community Workshop Report explores the priorities and problems regions face in reducing consequent damage and spurring technological preparedness advances. Over the course of the Grand Challenges in Earthquake Engineering Research workshop, 13 grand challenge problems emerged and were summarized in terms of five overarching themes including: community resilience framework, decision making, simulation, mitigation, and design tools. Participants suggested 14 experimental facilities and cyberinfrastructure tools that would be needed to carry out testing, observations, and simulations, and to analyze the results. The report also reviews progressive steps that have been made in research and development, and considers what factors will accelerate transformative solutions.
No person or place is immune from disasters or disaster-related losses. Infectious disease outbreaks, acts of terrorism, social unrest, or financial disasters in addition to natural hazards can all lead to large-scale consequences for the nation and its communities. Communities and the nation thus face difficult fiscal, social, cultural, and environmental choices about the best ways to ensure basic security and quality of life against hazards, deliberate attacks, and disasters. Beyond the unquantifiable costs of injury and loss of life from disasters, statistics for 2011 alone indicate economic damages from natural disasters in the United States exceeded $55 billion, with 14 events costing more than a billion dollars in damages each. One way to reduce the impacts of disasters on the nation and its communities is to invest in enhancing resilience-the ability to prepare and plan for, absorb, recover from and more successfully adapt to adverse events. Disaster Resilience: A National Imperative addresses the broad issue of increasing the nation's resilience to disasters. This book defines "national resilience", describes the state of knowledge about resilience to hazards and disasters, and frames the main issues related to increasing resilience in the United States. It also provide goals, baseline conditions, or performance metrics for national resilience and outlines additional information, data, gaps, and/or obstacles that need to be addressed to increase the nation's resilience to disasters. Additionally, the book's authoring committee makes recommendations about the necessary approaches to elevate national resilience to disasters in the United States. Enhanced resilience allows better anticipation of disasters and better planning to reduce disaster losses-rather than waiting for an event to occur and paying for it afterward. Disaster Resilience confronts the topic of how to increase the nation's resilience to disasters through a vision of the characteristics of a resilient nation in the year 2030. Increasing disaster resilience is an imperative that requires the collective will of the nation and its communities. Although disasters will continue to occur, actions that move the nation from reactive approaches to disasters to a proactive stance where communities actively engage in enhancing resilience will reduce many of the broad societal and economic burdens that disasters can cause.
Improved Seismic Monitoringâ€"Improved Decision-Making, describes and assesses the varied economic benefits potentially derived from modernizing and expanding seismic monitoring activities in the United States. These benefits include more effective loss avoidance regulations and strategies, improved understanding of earthquake processes, better engineering design, more effective hazard mitigation strategies, and improved emergency response and recovery. The economic principles that must be applied to determine potential benefits are reviewed and the report concludes that although there is insufficient information available at present to fully quantify all the potential benefits, the annual dollar costs for improved seismic monitoring are in the tens of millions and the potential annual dollar benefits are in the hundreds of millions.
Social science research conducted since the late 1970's has contributed greatly to society's ability to mitigate and adapt to natural, technological, and willful disasters. However, as evidenced by Hurricane Katrina, the Indian Ocean tsunami, the September 11, 2001 terrorist attacks on the United States, and other recent events, hazards and disaster research and its application could be improved greatly. In particular, more studies should be pursued that compare how the characteristics of different types of events-including predictability, forewarning, magnitude, and duration of impact-affect societal vulnerability and response. This book includes more than thirty recommendations for the hazards and disaster community.
In the wake of a large-scale disaster, from the initial devastation through the long tail of recovery, protecting the health and well-being of the affected individuals and communities is paramount. Accurate and timely information about mortality and significant morbidity related to the disaster are the cornerstone of the efforts of the disaster management enterprise to save lives and prevent further health impacts. Conversely, failure to accurately capture mortality and significant morbidity data undercuts the nation's capacity to protect its population. Information about disaster-related mortality and significant morbidity adds value at all phases of the disaster management cycle. As a disaster unfolds, the data are crucial in guiding response and recovery priorities, ensuring a common operating picture and real-time situational awareness across stakeholders, and protecting vulnerable populations and settings at heightened risk. A Framework for Assessing Mortality and Morbidity After Large-Scale Disasters reviews and describes the current state of the field of disaster-related mortality and significant morbidity assessment. This report examines practices and methods for data collection, recording, sharing, and use across state, local, tribal, and territorial stakeholders; evaluates best practices; and identifies areas for future resource investment.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.