Because of the important national defense contribution of large, non-fighter aircraft, rapidly increasing fuel costs and increasing dependence on imported oil have triggered significant interest in increased aircraft engine efficiency by the U.S. Air Force. To help address this need, the Air Force asked the National Research Council (NRC) to examine and assess technical options for improving engine efficiency of all large non-fighter aircraft under Air Force command. This report presents a review of current Air Force fuel consumption patterns; an analysis of previous programs designed to replace aircraft engines; an examination of proposed engine modifications; an assessment of the potential impact of alternative fuels and engine science and technology programs, and an analysis of costs and funding requirements.
Because of the important national defense contribution of large, non-fighter aircraft, rapidly increasing fuel costs and increasing dependence on imported oil have triggered significant interest in increased aircraft engine efficiency by the U.S. Air Force. To help address this need, the Air Force asked the National Research Council (NRC) to examine and assess technical options for improving engine efficiency of all large non-fighter aircraft under Air Force command. This report presents a review of current Air Force fuel consumption patterns; an analysis of previous programs designed to replace aircraft engines; an examination of proposed engine modifications; an assessment of the potential impact of alternative fuels and engine science and technology programs, and an analysis of costs and funding requirements.
The high cost of aviation fuel has resulted in increased attention by Congress and the Air Force on improving military aircraft fuel efficiency. One action considered is modification of the aircraft's wingtip by installing, for example, winglets to reduce drag. While common on commercial aircraft, such modifications have been less so on military aircraft. In an attempt to encourage greater Air Force use in this area, Congress, in H. Rept. 109-452, directed the Air Force to provide a report examining the feasibility of modifying its aircraft with winglets. To assist in this effort, the Air Force asked the NRC to evaluate its aircraft inventory and identify those aircraft that may be good candidates for winglet modifications. This reportâ€"which considers other wingtip modifications in addition to wingletsâ€"presents a review of wingtip modifications; an examination of previous analyses and experience with such modifications; and an assessment of wingtip modifications for various Air Force aircraft and potential investment strategies.
The ability of the United States Air Force (USAF) to keep its aircraft operating at an acceptable operational tempo, in wartime and in peacetime, has been important to the Air Force since its inception. This is a much larger issue for the Air Force today, having effectively been at war for 20 years, with its aircraft becoming increasingly more expensive to operate and maintain and with military budgets certain to further decrease. The enormously complex Air Force weapon system sustainment enterprise is currently constrained on many sides by laws, policies, regulations and procedures, relationships, and organizational issues emanating from Congress, the Department of Defense (DoD), and the Air Force itself. Against the back-drop of these stark realities, the Air Force requested the National Research Council (NRC) of the National Academies, under the auspices of the Air Force Studies Board to conduct and in-depth assessment of current and future Air Force weapon system sustainment initiatives and recommended future courses of action for consideration by the Air Force. Examination of the U.S. Air Force's Aircraft Sustainment Needs in the Future and Its Strategy to Meet Those Needs addresses the following topics: Assess current sustainment investments, infrastructure, and processes for adequacy in sustaining aging legacy systems and their support equipment. Determine if any modifications in policy are required and, if so, identify them and make recommendations for changes in Air Force regulations, policies, and strategies to accomplish the sustainment goals of the Air Force. Determine if any modifications in technology efforts are required and, if so, identify them and make recommendations regarding the technology efforts that should be pursued because they could make positive impacts on the sustainment of the current and future systems and equipment of the Air Force. Determine if the Air Logistics Centers have the necessary resources (funding, manpower, skill sets, and technologies) and are equipped and organized to sustain legacy systems and equipment and the Air Force of tomorrow. Identify and make recommendations regarding incorporating sustainability into future aircraft designs.
Overall Air Force weapon system sustainment (WSS) costs are growing at more than 4 percent per year, while budgets have remained essentially flat. The cost growth is due partly to aging of the aircraft fleet, and partly to the cost of supporting higher-performance aircraft and new capabilities provided by more complex and sophisticated systems, such as the latest intelligence, surveillance, and reconnaissance (ISR) platforms. Furthermore, the expectation for the foreseeable future is that sustainment budgets are likely to decrease, so that the gap between budgets and sustainment needs will likely continue to grow wider. Most observers accept that the Air Force will have to adopt new approaches to WSS if it is going to address this problem and remain capable of carrying out its missions. In this context, the original intent of this 3-day workshop was to focus on ways that science and technology (S&T) could help the Air Force reduce sustainment costs. However, as the workshop evolved, the discussions focused more and more on Air Force leadership, management authority, and culture as the more critical factors that need to change in order to solve sustainment problems. Many participants felt that while S&T investments could certainly help-particularly if applied in the early stages ("to the left") of the product life cycle-adopting a transformational management approach that defines the user-driven goals of the enterprise, empowers people to achieve them, and holds them accountable, down to the shop level. Several workshop participants urged Air Force leaders to start the process now, even though it will take years to percolate down through the entire organization. These sustainment concerns are not new and have been studied extensively, including recent reports from the National Research Council's Air Force Studies Board and the Air Force Scientific Advisory Board.
The United States has publicly funded its human spaceflight program on a continuous basis for more than a half-century, through three wars and a half-dozen recessions, from the early Mercury and Gemini suborbital and Earth orbital missions, to the lunar landings, and thence to the first reusable winged crewed spaceplane that the United States operated for three decades. Today the United States is the major partner in a massive orbital facility - the International Space Station - that is becoming the focal point for the first tentative steps in commercial cargo and crewed orbital space flights. And yet, the long-term future of human spaceflight beyond this project is unclear. Pronouncements by multiple presidents of bold new ventures by Americans to the Moon, to Mars, and to an asteroid in its native orbit, have not been matched by the same commitment that accompanied President Kennedy\'s now fabled 1961 speech-namely, the substantial increase in NASA funding needed to make it happen. Are we still committed to advancing human spaceflight? What should a long-term goal be, and what does the United States need to do to achieve it? Pathways to Exploration explores the case for advancing this endeavor, drawing on the history of rationales for human spaceflight, examining the attitudes of stakeholders and the public, and carefully assessing the technical and fiscal realities. This report recommends maintaining the long-term focus on Mars as the horizon goal for human space exploration. With this goal in mind, the report considers funding levels necessary to maintain a robust tempo of execution, current research and exploration projects and the time/resources needed to continue them, and international cooperation that could contribute to the achievement of spaceflight to Mars. According to Pathways to Exploration, a successful U.S. program would require sustained national commitment and a budget that increases by more than the rate of inflation. In reviving a U.S. human exploration program capable of answering the enduring questions about humanity's destiny beyond our tiny blue planet, the nation will need to grapple with the attitudinal and fiscal realities of the nation today while staying true to a small but crucial set of fundamental principles for the conduct of exploration of the endless frontier. The recommendations of Pathways to Exploration provide a clear map toward a human spaceflight program that inspires students and citizens by furthering human exploration and discovery, while taking into account the long-term commitment necessary to achieve this goal.
Over the past 5 years or more, there has been a steady and significant decrease in NASA's laboratory capabilities, including equipment, maintenance, and facility upgrades. This adversely affects the support of NASA's scientists, who rely on these capabilities, as well as NASA's ability to make the basic scientific and technical contributions that others depend on for programs of national importance. The fundamental research community at NASA has been severely impacted by the budget reductions that are responsible for this decrease in laboratory capabilities, and as a result NASA's ability to support even NASA's future goals is in serious jeopardy.
The development and application of increasingly autonomous (IA) systems for civil aviation is proceeding at an accelerating pace, driven by the expectation that such systems will return significant benefits in terms of safety, reliability, efficiency, affordability, and/or previously unattainable mission capabilities. IA systems range from current automatic systems such as autopilots and remotely piloted unmanned aircraft to more highly sophisticated systems that are needed to enable a fully autonomous aircraft that does not require a pilot or human air traffic controllers. These systems, characterized by their ability to perform more complex mission-related tasks with substantially less human intervention for more extended periods of time, sometimes at remote distances, are being envisioned for aircraft and for air traffic management and other ground-based elements of the national airspace system. Civil aviation is on the threshold of potentially revolutionary improvements in aviation capabilities and operations associated with IA systems. These systems, however, face substantial barriers to integration into the national airspace system without degrading its safety or efficiency. Autonomy Research for Civil Aviation identifies key barriers and suggests major elements of a national research agenda to address those barriers and help realize the benefits that IA systems can make to crewed aircraft, unmanned aircraft systems, and ground-based elements of the national airspace system. This report develops a set of integrated and comprehensive technical goals and objectives of importance to the civil aeronautics community and the nation. Autonomy Research for Civil Aviation will be of interest to U.S. research organizations, industry, and academia who have a role in meeting these goals.
Advancing the state of aviation safety is a central mission of the National Aeronautics and Space Administration (NASA). Congress requested this review of NASA's aviation safety-related research programs, seeking an assessment of whether the programs have well-defined, prioritized, and appropriate research objectives; whether resources have been allocated appropriately among these objectives; whether the programs are well coordinated with the safety research programs of the Federal Aviation Administration; and whether suitable mechanisms are in place for transitioning the research results into operational technologies and procedures and certification activities in a timely manner. Advancing Aeronautical Safety contains findings and recommendations with respect to each of the main aspects of the review sought by Congress. These findings indicate that NASA's aeronautics research enterprise has made, and continues to make, valuable contributions to aviation system safety but it is falling short and needs improvement in some key respects.
The high cost of aviation fuel has resulted in increased attention by Congress and the Air Force on improving military aircraft fuel efficiency. One action considered is modification of the aircraft's wingtip by installing, for example, winglets to reduce drag. While common on commercial aircraft, such modifications have been less so on military aircraft. In an attempt to encourage greater Air Force use in this area, Congress, in H. Rept. 109-452, directed the Air Force to provide a report examining the feasibility of modifying its aircraft with winglets. To assist in this effort, the Air Force asked the NRC to evaluate its aircraft inventory and identify those aircraft that may be good candidates for winglet modifications. This reportâ€"which considers other wingtip modifications in addition to wingletsâ€"presents a review of wingtip modifications; an examination of previous analyses and experience with such modifications; and an assessment of wingtip modifications for various Air Force aircraft and potential investment strategies.
The ability of the United States Air Force (USAF) to keep its aircraft operating at an acceptable operational tempo, in wartime and in peacetime, has been important to the Air Force since its inception. This is a much larger issue for the Air Force today, having effectively been at war for 20 years, with its aircraft becoming increasingly more expensive to operate and maintain and with military budgets certain to further decrease. The enormously complex Air Force weapon system sustainment enterprise is currently constrained on many sides by laws, policies, regulations and procedures, relationships, and organizational issues emanating from Congress, the Department of Defense (DoD), and the Air Force itself. Against the back-drop of these stark realities, the Air Force requested the National Research Council (NRC) of the National Academies, under the auspices of the Air Force Studies Board to conduct and in-depth assessment of current and future Air Force weapon system sustainment initiatives and recommended future courses of action for consideration by the Air Force. Examination of the U.S. Air Force's Aircraft Sustainment Needs in the Future and Its Strategy to Meet Those Needs addresses the following topics: Assess current sustainment investments, infrastructure, and processes for adequacy in sustaining aging legacy systems and their support equipment. Determine if any modifications in policy are required and, if so, identify them and make recommendations for changes in Air Force regulations, policies, and strategies to accomplish the sustainment goals of the Air Force. Determine if any modifications in technology efforts are required and, if so, identify them and make recommendations regarding the technology efforts that should be pursued because they could make positive impacts on the sustainment of the current and future systems and equipment of the Air Force. Determine if the Air Logistics Centers have the necessary resources (funding, manpower, skill sets, and technologies) and are equipped and organized to sustain legacy systems and equipment and the Air Force of tomorrow. Identify and make recommendations regarding incorporating sustainability into future aircraft designs.
Overall Air Force weapon system sustainment (WSS) costs are growing at more than 4 percent per year, while budgets have remained essentially flat. The cost growth is due partly to aging of the aircraft fleet, and partly to the cost of supporting higher-performance aircraft and new capabilities provided by more complex and sophisticated systems, such as the latest intelligence, surveillance, and reconnaissance (ISR) platforms. Furthermore, the expectation for the foreseeable future is that sustainment budgets are likely to decrease, so that the gap between budgets and sustainment needs will likely continue to grow wider. Most observers accept that the Air Force will have to adopt new approaches to WSS if it is going to address this problem and remain capable of carrying out its missions. In this context, the original intent of this 3-day workshop was to focus on ways that science and technology (S&T) could help the Air Force reduce sustainment costs. However, as the workshop evolved, the discussions focused more and more on Air Force leadership, management authority, and culture as the more critical factors that need to change in order to solve sustainment problems. Many participants felt that while S&T investments could certainly help-particularly if applied in the early stages ("to the left") of the product life cycle-adopting a transformational management approach that defines the user-driven goals of the enterprise, empowers people to achieve them, and holds them accountable, down to the shop level. Several workshop participants urged Air Force leaders to start the process now, even though it will take years to percolate down through the entire organization. These sustainment concerns are not new and have been studied extensively, including recent reports from the National Research Council's Air Force Studies Board and the Air Force Scientific Advisory Board.
A key technical issue for future Air Force systems is to improve their ability to survive. Increased use of stealth technology is proposed by many to be the major element in efforts to enhance survivability for future systems. Others, however, suggest that the high cost and maintenance required of stealth technology make increased speed potentially more productive. To help address this issue, the Air Force asked the NRC to investigate combinations of speed and stealth that would provide U.S. aircraft with a high survival capability in the 2018 period, and to identify changes in R&D plans to enable such aircraft. This report presents a review of stealth technology development; a discussion of possible future missions and threats; an analysis of the technical feasibility for achieving various levels of stealth and different speeds by 2018 and of relevant near-term R&D needs and priorities; and observations about the utility of speed and stealth trade-offs against evolving threats.
From the days of biplanes and open cockpits, the air forces of the United States have relied on the mastery of technology. From design to operation, a project can stretch to 20 years and more, with continuous increases in cost. Much of the delay and cost growth afflicting modern United States Air Force (USAF) programs is rooted in the incorporation of advanced technology into major systems acquisition. Leaders in the Air Force responsible for science and technology and acquisition are trying to determine the optimal way to utilize existing policies, processes, and resources to properly document and execute pre-program of record technology development efforts, including opportunities to facilitate the rapid acquisition of revolutionary capabilities and the more deliberate acquisition of evolutionary capabilities. Evaluation of U.S. Air Force Preacquisition Technology Development responds to this need with an examination of the current state of Air Force technology development and the environment in which technology is acquired. The book considers best practices from both government and industry to distill appropriate recommendations that can be implemented within the USAF.
The development and application of technology has been an essential part of U.S. airpower, leading to a century of air supremacy. But that developmental path has rarely been straight, and it has never been smooth. Only the extraordinary efforts of exceptional leadership - in the Air Forces and the wider Department of Defense, in science and in industry - have made the triumphs of military airpower possible. Development Planning provides recommendations to improve development planning for near-term acquisition projects, concepts not quite ready for acquisition, corporate strategic plans, and training of acquisition personnel. This report reviews past uses of development planning by the Air Force, and offers an organizational construct that will help the Air Force across its core functions. Developmental planning, used properly by experienced practitioners, can provide the Air Force leadership with a tool to answer the critical question, Over the next 20 years in 5-year increments, what capability gaps will the Air Force have that must be filled? Development planning will also provide for development of the workforce skills needed to think strategically and to defectively define and close the capability gap. This report describes what development planning could be and should be for the Air Force.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.