Accelerating the transition of new technologies into systems and products will be crucial to the Department of Defenses development of a lighter, more flexible fighting force. Current long transition times-ten years or more is now typical-are attributed to the complexity of the process. To help meet these challenges, the Department of Defense asked the National Research Council to examine lessons learned from rapid technology applications by integrated design and manufacturing groups. This report presents the results of that study, which was based on a workshop held to explore these successful cases. Three key areas emerged: creating a culture for innovation and rapid technology transition; methodologies and approaches; and enabling tools and databases.
Accelerating the transition of new technologies into systems and products will be crucial to the Department of Defenses development of a lighter, more flexible fighting force. Current long transition times-ten years or more is now typical-are attributed to the complexity of the process. To help meet these challenges, the Department of Defense asked the National Research Council to examine lessons learned from rapid technology applications by integrated design and manufacturing groups. This report presents the results of that study, which was based on a workshop held to explore these successful cases. Three key areas emerged: creating a culture for innovation and rapid technology transition; methodologies and approaches; and enabling tools and databases.
Lightweighting is a concept well known to structural designers and engineers in all applications areas, from laptops to bicycles to automobiles to buildings and airplanes. Reducing the weight of structures can provide many advantages, including increased energy efficiency, better design, improved usability, and better coupling with new, multifunctional features. While lightweighting is a challenge in commercial structures, the special demands of military vehicles for survivability, maneuverability and transportability significantly stress the already complex process. Application of Lightweighting Technology to Military Vehicles, Vessels, and Aircraft assesses the current state of lightweighting implementation in land, sea, and air vehicles and recommends ways to improve the use of lightweight materials and solutions. This book considers both lightweight materials and lightweight design; the availability of lightweight materials from domestic manufacturers; and the performance of lightweight materials and their manufacturing technologies. It also considers the "trade space"-that is, the effect that use of lightweight materials or technologies can have on the performance and function of all vehicle systems and components. This book also discusses manufacturing capabilities and affordable manufacturing technology to facilitate lightweighting. Application of Lightweighting Technology to Military Vehicles, Vessels, and Aircraft will be of interest to the military, manufacturers and designers of military equipment, and decision makers.
Created in 1982 through the Small Business Innovation Development Act, the Small Business Innovation Research (SBIR) program remains the nation's single largest innovation program for small business. The SBIR program offers competitive awards to support the development and commercialization of innovative technologies by small private-sector businesses. At the same time, the program provides government agencies with technical and scientific solutions that address their different missions. SBIR at the Department of Defense considers ways that the Department of Defense SBIR program could work better in addressing the congressional objectives for the SBIR program to stimulate technological innovation, use small businesses to meet federal research and development (R & D) needs, foster and encourage the participation of socially and economically disadvantaged small businesses, and increase the private sector commercialization of innovations derived from federal R&D. An earlier report, An Assessment of the Small Business Innovation Research Program at the Department of Defense, studied how the SBIR program has stimulated technological innovation and used small businesses to meet federal research and development needs. This report builds on the previous one, with a revised survey of SBIR companies. SBIR at the Department of Defense revisits some case studies from the 2009 study and develops new ones, and interviews agency managers and other stakeholders to provide a second snapshot of the program's progress toward achieving its legislative goals.
Integrated computational materials engineering (ICME) is an emerging discipline that can accelerate materials development and unify design and manufacturing. Developing ICME is a grand challenge that could provide significant economic benefit. To help develop a strategy for development of this new technology area, DOE and DoD asked the NRC to explore its benefits and promises, including the benefits of a comprehensive ICME capability; to establish a strategy for development and maintenance of an ICME infrastructure, and to make recommendations about how best to meet these opportunities. This book provides a vision for ICME, a review of case studies and lessons learned, an analysis of technological barriers, and an evaluation of ways to overcome cultural and organizational challenges to develop the discipline.
The ongoing development of military aerospace platforms requires continuous technology advances in order to provide the nation's war fighters with the desired advantage. Significant advances in the performance and efficiency of jet and rocket propulsion systems are strongly dependent on the development of lighter more durable high-temperature materials. Materials development has been significantly reduced in the United States since the early 1990s, when the Department of Defense (DOD), the military services, and industry had very active materials development activities to underpin the development of new propulsion systems. This resulted in significant improvements in all engine characteristics and established the United States in global propulsion technology. Many of the significant advances in aircraft and rocket propulsion have been enabled by improved materials and, materials manufacturing processes. To improve efficiency further, engine weight must be reduced while preserving thrust. Materials Needs and Research and Development Strategy for Future Military Aerospace Propulsion Systems examines whether current and planned U.S. efforts are sufficient to meet U.S. military needs while keeping the U.S. on the leading edge of propulsion technology. This report considers mechanisms for the timely insertion of materials in propulsion systems and how these mechanisms might be improved, and describes the general elements of research and development strategies to develop materials for future military aerospace propulsion systems. The conclusions and recommendations asserted in this report will enhance the efficiency, level of effort, and impact of DOD materials development activities.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.