Just below our feet is an environment that supports our infrastructure, yields water, provides for agriculture, and receives our waste. Our capacity to describe, or characterize, this environment is crucial to the solution of many resource, environmental, and engineering problems. And just as medical imaging technologies have reduced the need for exploratory surgeries, a variety of technologies hold the promise for rapid, relatively inexpensive noninvasive characterization of the Earth's subsurface. Seeing into the Earth examines why noninvasive characterization is important and how improved methods can be developed and disseminated. Looking at the issues from both the commercial and public perspectives, the volume makes recommendations for linking characterization and cost savings, closing the gap between the state of science and the state of the practice, and helping practitioners make the best use of the best methods. The book provides background on: The role of noninvasive subsurface characterization in contaminant cleanup, resource management, civil engineering, and other areas. The physical, chemical, biological, and geological properties that are characterized. Methods of characterization and prospects for technological improvement. Certain to be important for earth scientists and engineers alike, this book is also accessible to interested lay readers.
On October 11, 2000, a breakthrough of Martin County Coal Corporation's coal waste impoundment released 250 million gallons of slurry in near Inez, Kentucky. The 72-acre surface impoundment for coal processing waste materials broke through into a nearby underground coal mine. Although the spill caused no loss of human life, environmental damage was significant, and local water supplies were disrupted. This incident prompted Congress to request the National Research Council to examine ways to reduce the potential for similar accidents in the future. This book covers the engineering practices and standards for coal waste impoundments and ways to evaluate, improve, and monitor them; the accuracy of mine maps and ways to improve surveying and mapping of mines; and alternative technologies for coal slurry disposal and utilization. The book contains advice for multiple audiences, including the Mine Safety and Health Administration, the Office of Surface Mining, and other federal agencies; state and local policymakers and regulators; the coal industry and its consultants; and scientists and engineers.
President Carter's 1980 declaration of a state of emergency at Love Canal, New York, recognized that residents' health had been affected by nearby chemical waste sites. The Resource Conservation and Recovery Act, enacted in 1976, ushered in a new era of waste management disposal designed to protect the public from harm. It required that modern waste containment systems use "engineered" barriers designed to isolate hazardous and toxic wastes and prevent them from seeping into the environment. These containment systems are now employed at thousands of waste sites around the United States, and their effectiveness must be continually monitored. Assessment of the Performance of Engineered Waste Containment Barriers assesses the performance of waste containment barriers to date. Existing data suggest that waste containment systems with liners and covers, when constructed and maintained in accordance with current regulations, are performing well thus far. However, they have not been in existence long enough to assess long-term (postclosure) performance, which may extend for hundreds of years. The book makes recommendations on how to improve future assessments and increase confidence in predictions of barrier system performance which will be of interest to policy makers, environmental interest groups, industrial waste producers, and industrial waste management industry.
This study is a review and evaluation of the U.S. Army's Report to Congress on Alternative Approaches for the Treatment and Disposal of Chemical Agent Identification Sets (CAIS). CAIS are test kits that were used to train soldiers from 1928 to 1969 in defensive responses to a chemical attack. They contain samples of chemicals that had been or might have been used by opponents as chemical warfare agents. The Army's baseline approach for treating and disposing of CAIS has been to develop a mobile treatment system, called the Rapid Response System (RRS), which can be carried by several large over-the-road trailers.
Scientists have long sought to unravel the fundamental mysteries of the land, life, water, and air that surround us. But as the consequences of humanity's impact on the planet become increasingly evident, governments are realizing the critical importance of understanding these environmental systemsâ€"and investing billions of dollars in research to do so. To identify high-priority environmental science projects, Grand Challenges in Environmental Sciences explores the most important areas of research for the next generation. The book's goal is not to list the world's biggest environmental problems. Rather it is to determine areas of opportunity thatâ€"with a concerted investmentâ€"could yield significant new findings. Nominations for environmental science's "grand" challenges were solicited from thousands of scientists worldwide. Based on their responses, eight major areas of focus were identifiedâ€"areas that offer the potential for a major scientific breakthrough of practical importance to humankind, and that are feasible if given major new funding. The book further pinpoints four areas for immediate action and investment.
The United States Department of Energy (DOE) has approximately 400 million liters (100 million gallons) of liquid high-level waste (HLW) stored in underground tanks and approximately 4,000 cubic meters of solid HLW stored in bins. The current DOE estimate of the cost of converting these liquid and solid wastes into stable forms for shipment to a geological repository exceeds $50 billion to be spent over several decades (DOE, 2000). The Committee on Long-Term Research Needs for Radioactive High-Level Waste at Department of Energy Sites was appointed by the National Research Council (NRC) to advise the Environmental Management Science Program (EMSP) on a long-term research agenda addressing the above problems related to HLW stored in tanks and bins at DOE sites.
The Environmental Protection Agency's estimate of the costs associated with implementing numeric nutrient criteria in Florida's waterways was significantly lower than many stakeholders expected. This discrepancy was due, in part, to the fact that the Environmental Protection Agency's analysis considered only the incremental cost of reducing nutrients in waters it considered "newly impaired" as a result of the new criteria-not the total cost of improving water quality in Florida. The incremental approach is appropriate for this type of assessment, but the Environmental Protection Agency's cost analysis would have been more accurate if it better described the differences between the new numeric criteria rule and the narrative rule it would replace, and how the differences affect the costs of implementing nutrient reductions over time, instead of at a fixed time point. Such an analysis would have more accurately described which pollutant sources, for example municipal wastewater treatment plants or agricultural operations, would bear the costs over time under the different rules and would have better illuminated the uncertainties in making such cost estimates.
In response to a request from Congress, the U.S. Department of Energy (DOE) asked the National Academies to evaluate its plans for managing radioactive wastes from spent nuclear fuel at sites in Idaho, South Carolina, and Washington. This interim report evaluates storage facilities at the Savannah River Site in South Carolina, with a particular focus on plans to seal the tanks with grouting. The report finds that tanks at the site do not necessarily need to be sealed shut as soon as the bulk of the waste has been removed. Postponing permanent closure buys more time for the development and application of emerging technologies to remove and better immobilize residual waste, without increasing risks to the environment or delaying final closure of the "tank farms." The report also recommends alternatives to address the lack of tank space at the site, as well as the need for focused R&D activities to reduce the amount and improve the immobilization of residual waste in the tanks and to test some of the assumptions used in evaulating long-term risks at the site.
Twelve years into the Comprehensive Everglades Restoration Project, little progress has been made in restoring the core of the remaining Everglades ecosystem; instead, most project construction so far has occurred along its periphery. To reverse ongoing ecosystem declines, it will be necessary to expedite restoration projects that target the central Everglades, and to improve both the quality and quantity of the water in the ecosystem. The new Central Everglades Planning Project offers an innovative approach to this challenge, although additional analyses are needed at the interface of water quality and water quantity to maximize restoration benefits within existing legal constraints. Progress Toward Restoring the Everglades: The Fourth Biennial Review, 2012 explains the innovative approach to expedite restoration progress and additional rigorous analyses at the interface of water quality and quantity will be essential to maximize restoration benefits.
DOE Tank Waste: How clean is clean enough? The U.S. Congress asked the National Academies to evaluate the Department of Energy's (DOE's) plans for cleaning up defense-related radioactive wastes stored in underground tanks at three sites: the Hanford Site in Washington State, the Savannah River Site in South Carolina, and the Idaho National Laboratory. DOE plans to remove the waste from the tanks, separate out high-level radioactive waste to be shipped to an off-site geological repository, and dispose of the remaining lower-activity waste onsite. The report concludes that DOE's overall plan is workable, but some important challenges must be overcomeâ€"including the removal of residual waste from some tanks, especially at Hanford and Savannah River. The report recommends that DOE pursue a more risk-informed, consistent, participatory, and transparent for making decisions about how much waste to retrieve from tanks and how much to dispose of onsite. The report offers several other detailed recommendations to improve the technical soundness of DOE's tank cleanup plans.
The field of geoengineering is at a crossroads where the path to high-tech solutions meets the path to expanding applications of geotechnology. In this report, the term "geoengineering" includes all types of engineering that deal with Earth materials, such as geotechnical engineering, geological engineering, hydrological engineering, and Earth-related parts of petroleum engineering and mining engineering. The rapid expansion of nanotechnology, biotechnology, and information technology begs the question of how these new approaches might come to play in developing better solutions for geotechnological problems. This report presents a vision for the future of geotechnology aimed at National Science Foundation (NSF) program managers, the geological and geotechnical engineering community as a whole, and other interested parties, including Congress, federal and state agencies, industry, academia, and other stakeholders in geoengineering research. Some of the ideas may be close to reality whereas others may turn out to be elusive, but they all present possibilities to strive for and potential goals for the future. Geoengineers are poised to expand their roles and lead in finding solutions for modern Earth systems problems, such as global change, emissions-free energy supply, global water supply, and urban systems.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.