NASA's current missions to the International Space Station (ISS) and potential future exploration missions involving extended stays by astronauts on the lunar surface, as well as the possibility of near- Earth object (NEO) or Mars missions, present challenges in protecting astronauts from radiation risks. These risks arise from a number of sources, including solar particle events (SPEs), galactic cosmic rays (GCRs), secondary radiation from surface impacts, and even the nuclear isotope power sources transported with the astronauts. The serious early and late radiation health effects potentially posed by these exposures are equally varied, ranging from early signs of radiation sickness to cancer induction. Other possible effects include central nervous system damage, cataracts, cardiovascular damage, heritable effects, impaired wound healing, and infertility. Recent research, much of which has been sponsored by NASA, has focused on understanding and quantifying the radiation health risks posed by space radiation environments. Although many aspects of the space radiation environments are now relatively well characterized, important uncertainties still exist regarding biological effects and thus regarding the level and types of risks faced by astronauts. This report presents an evaluation of NASA's proposed space radiation cancer risk assessment model, which is described in the 2011 NASA report, Space Radiation Cancer Risk Projections and Uncertainties-2010. The evaluation in Technical Evaluation of the NASA Model for Cancer Risk to Astronauts Due to Space Radiation considers the model components, input data (for the radiation types, estimated doses, and epidemiology), and the associated uncertainties. This report also identifies gaps in NASA's current research strategy for reducing the uncertainties in cancer induction risks.
NASA's current missions to the International Space Station (ISS) and potential future exploration missions involving extended stays by astronauts on the lunar surface, as well as the possibility of near- Earth object (NEO) or Mars missions, present challenges in protecting astronauts from radiation risks. These risks arise from a number of sources, including solar particle events (SPEs), galactic cosmic rays (GCRs), secondary radiation from surface impacts, and even the nuclear isotope power sources transported with the astronauts. The serious early and late radiation health effects potentially posed by these exposures are equally varied, ranging from early signs of radiation sickness to cancer induction. Other possible effects include central nervous system damage, cataracts, cardiovascular damage, heritable effects, impaired wound healing, and infertility. Recent research, much of which has been sponsored by NASA, has focused on understanding and quantifying the radiation health risks posed by space radiation environments. Although many aspects of the space radiation environments are now relatively well characterized, important uncertainties still exist regarding biological effects and thus regarding the level and types of risks faced by astronauts. This report presents an evaluation of NASA's proposed space radiation cancer risk assessment model, which is described in the 2011 NASA report, Space Radiation Cancer Risk Projections and Uncertainties-2010. The evaluation in Technical Evaluation of the NASA Model for Cancer Risk to Astronauts Due to Space Radiation considers the model components, input data (for the radiation types, estimated doses, and epidemiology), and the associated uncertainties. This report also identifies gaps in NASA's current research strategy for reducing the uncertainties in cancer induction risks.
As part of the Vision for Space Exploration (VSE), NASA is planning for humans to revisit the Moon and someday go to Mars. An important consideration in this effort is protection against the exposure to space radiation. That radiation might result in severe long-term health consequences for astronauts on such missions if they are not adequately shielded. To help with these concerns, NASA asked the NRC to further the understanding of the risks of space radiation, to evaluate radiation shielding requirements, and recommend a strategic plan for developing appropriate mitigation capabilities. This book presents an assessment of current knowledge of the radiation environment; an examination of the effects of radiation on biological systems and mission equipment; an analysis of current plans for radiation protection; and a strategy for mitigating the risks to VSE astronauts.
Evaluation of the Implementation of WFIRST in the Context of New Worlds, New Horizons in Astronomy and Astrophysics assesses whether the proposed Astrophysics Focused Telescope Assets (AFTA) design reference mission described in the April 30, 2013 report of the AFTA Science Definition Team (SDT), WFIRST-2.4, is responsive to the overall strategy to pursue the science objectives of New Worlds, New Horizons in Astronomy and Astrophysics, and in particular, the survey's top ranked, large-scale, space-based priority: the Wide Field Infrared Survey Telescope (WFIRST). This report considers the versions of WFIRST-2.4 with and without the coronagraph, as described in the AFTA SDT report. The report compares the WFIRST mission described in New Worlds, New Horizons to the AFTA SDT WFIRST-2.4 design reference mission, with and without the coronagraph, on the basis of their science objectives, technical complexity, and programmatic rationale, including projected cost. This report gives an overview of relevant scientific, technical, and programmatic changes that have occurred since the release of New Worlds, New Horizons, and assesses the responsiveness of the WFIRST mission to the science and technology objectives of the New Worlds report.
NASA's exploration of planets and satellites during the past 50 years has led to the discovery of traces of water ice throughout the solar system and prospects for large liquid water reservoirs beneath the frozen ICE shells of multiple satellites of the giant planets of the outer solar system. During the coming decades, NASA and other space agencies will send flybys, orbiters, subsurface probes, and, possibly, landers to these distant worlds in order to explore their geologic and chemical context. Because of their potential to harbor alien life, NASA will select missions that target the most habitable outer solar system objects. This strategy poses formidable challenges for mission planners who must balance the opportunity for exploration with the risk of contamination by Earth's microbes, which could confuse the interpretation of data obtained from these objects. The 2000 NRC report Preventing the Forward Contamination of Europa provided a criterion that was adopted with prior recommendations from the Committee on Space Research of the International Council for Science. This current NRC report revisits and extends the findings and recommendations of the 2000 Europa report in light of recent advances in planetary and life sciences and, among other tasks, assesses the risk of contamination of icy bodies in the solar system.
From the interior of the Sun, to the upper atmosphere and near-space environment of Earth, and outward to a region far beyond Pluto where the Sun's influence wanes, advances during the past decade in space physics and solar physics-the disciplines NASA refers to as heliophysics-have yielded spectacular insights into the phenomena that affect our home in space. Solar and Space Physics, from the National Research Council's (NRC's) Committee for a Decadal Strategy in Solar and Space Physics, is the second NRC decadal survey in heliophysics. Building on the research accomplishments realized during the past decade, the report presents a program of basic and applied research for the period 2013-2022 that will improve scientific understanding of the mechanisms that drive the Sun's activity and the fundamental physical processes underlying near-Earth plasma dynamics, determine the physical interactions of Earth's atmospheric layers in the context of the connected Sun-Earth system, and enhance greatly the capability to provide realistic and specific forecasts of Earth's space environment that will better serve the needs of society. Although the recommended program is directed primarily at NASA and the National Science Foundation for action, the report also recommends actions by other federal agencies, especially the parts of the National Oceanic and Atmospheric Administration charged with the day-to-day (operational) forecast of space weather. In addition to the recommendations included in this summary, related recommendations are presented in this report.
Understanding the effects of natural and human-induced changes on the global environment and their implications requires a foundation of integrated observations of land, sea, air and space, on which to build credible information products, forecast models, and other tools for making informed decisions. The 2007 National Research Council report on decadal survey called for a renewal of the national commitment to a program of Earth observations in which attention to securing practical benefits for humankind plays an equal role with the quest to acquire new knowledge about the Earth system. NASA responded favorably and aggressively to this survey, embracing its overall recommendations for Earth observations, missions, technology investments, and priorities for the underlying science. As a result, the science and applications communities have made significant progress over the past 5 years. However, the Committee on Assessment of NASA's Earth Science Program found that the survey vision is being realized at a far slower pace than was recommended, principally because the required budget was not achieved. Exacerbating the budget shortfalls, NASA Earth science programs experienced launch failures and delays and the cost of implementing missions increased substantially as a result of changes in mission scope, increases in launch vehicle costs and/or the lack of availability of a medium-class launch vehicle, under-estimation of costs by the decadal survey, and unfunded programmatic changes that were required by Congress and the Office of Management and Budget. In addition, the National Oceanic and Atmospheric Administration (NOAA) has made significant reductions in scope to its future Earth environmental observing satellites as it contends with budget shortfalls. Earth Science and Applications from Space: A Midterm Assessment of NASA's Implementation of the Decadal Survey recommends a number of steps to better manage existing programs and to implement future programs that will be recommended by the next decadal survey. The report also highlights the urgent need for the Executive Branch to develop and implement an overarching multiagency national strategy for Earth observations from space, a key recommendation of the 2007 decadal survey that remains unfulfilled.
The National Research Council has conducted 11 decadal surveys in the Earth and space sciences since 1964 and released the latest four surveys in the past 8 years. The decadal surveys are notable in their ability to sample thoroughly the research interest, aspirations, and needs of a scientific community. Through a rigorous process, a primary survey committee and thematic panels of community members construct a prioritized program of science goals and objectives and define an executable strategy for achieving them. These reports play a critical role in defining the nation's agenda in that science area for the following 10 years, and often beyond. The Space Science Decadal Surveys considers the lessons learned from previous surveys and presents options for possible changes and improvements to the process, including the statement of task, advanced preparation, organization, and execution. This report discusses valuable aspects of decadal surveys that could taken further, as well as some challenges future surveys are likely to face in searching for the richest areas of scientific endeavor, seeking community consensus of where to go next, and planning how to get there. The Space Science Decadal Surveys describes aspects in the decadal survey prioritization process, including balance in the science program and across the discipline; balance between the needs of current researchers and the development of the future workforce; and balance in mission scale - smaller, competed programs versus large strategic missions.
Space-based observations have transformed our understanding of Earth, its environment, the solar system and the universe at large. During past decades, driven by increasingly advanced science questions, space observatories have become more sophisticated and more complex, with costs often growing to billions of dollars. Although these kinds of ever-more-sophisticated missions will continue into the future, small satellites, ranging in mass between 500 kg to 0.1 kg, are gaining momentum as an additional means to address targeted science questions in a rapid, and possibly more affordable, manner. Within the category of small satellites, CubeSats have emerged as a space-platform defined in terms of (10 cm x 10 cm x 10 cm)- sized cubic units of approximately 1.3 kg each called "U's." Historically, CubeSats were developed as training projects to expose students to the challenges of real-world engineering practices and system design. Yet, their use has rapidly spread within academia, industry, and government agencies both nationally and internationally. In particular, CubeSats have caught the attention of parts of the U.S. space science community, which sees this platform, despite its inherent constraints, as a way to affordably access space and perform unique measurements of scientific value. The first science results from such CubeSats have only recently become available; however, questions remain regarding the scientific potential and technological promise of CubeSats in the future. Achieving Science with CubeSats reviews the current state of the scientific potential and technological promise of CubeSats. This report focuses on the platform's promise to obtain high- priority science data, as defined in recent decadal surveys in astronomy and astrophysics, Earth science and applications from space, planetary science, and solar and space physics (heliophysics); the science priorities identified in the 2014 NASA Science Plan; and the potential for CubeSats to advance biology and microgravity research. It provides a list of sample science goals for CubeSats, many of which address targeted science, often in coordination with other spacecraft, or use "sacrificial," or high-risk, orbits that lead to the demise of the satellite after critical data have been collected. Other goals relate to the use of CubeSats as constellations or swarms deploying tens to hundreds of CubeSats that function as one distributed array of measurements.
In 1972 NASA launched the Earth Resources Technology Satellite (ETRS), now known as Landsat 1, and on February 11, 2013 launched Landsat 8. Currently the United States has collected 40 continuous years of satellite records of land remote sensing data from satellites similar to these. Even though this data is valuable to improving many different aspects of the country such as agriculture, homeland security, and disaster mitigation; the availability of this data for planning our nation\'s future is at risk. Thus, the Department of the Interior\'s (DOI\'s) U.S. Geological Survey (USGS) requested that the National Research Council\'s (NRC\'s) Committee on Implementation of a Sustained Land Imaging Program review the needs and opportunities necessary for the development of a national space-based operational land imaging capability. The committee was specifically tasked with several objectives including identifying stakeholders and their data needs and providing recommendations to facilitate the transition from NASA\'s research-based series of satellites to a sustained USGS land imaging program. Landsat and Beyond: Sustaining and Enhancing the Nation's Land Imaging Program is the result of the committee\'s investigation. This investigation included meetings with stakeholders such as the DOI, NASA, NOAA, and commercial data providers. The report includes the committee\'s recommendations, information about different aspects of the program, and a section dedicated to future opportunities.
On September 8-9, 2011, experts in solar physics, climate models, paleoclimatology, and atmospheric science assembled at the National Center for Atmospheric Research (NCAR) in Boulder, Colorado for a workshop to consider the Sun's variability over time and potential Sun-climate connections. While it does not provide findings, recommendations, or consensus on the current state of the science, The Effects of Solar Variability on Earth's Climate: A Workshop Report briefly introduces the primary topics discussed by presenters at the event. As context for these topics, the summary includes background information on the potential Sun-climate connection, the measurement record from space, and potential perturbations of climate due to long-term solar variability. This workshop report also summarizes some of the science questions explored by the participants as potential future research endeavors.
NASA's Science Mission Directorate (SMD) is engaged in the final stages of a comprehensive, agency-wide effort to develop a new strategic plan at a time when its budget is under considerable stress. SMD's Science Plan serves to provide more detail on its four traditional science disciplines - astronomy and astrophysics, solar and space physics (also called heliophysics), planetary science, and Earth remote sensing and related activities - than is possible in the agency-wide Strategic Plan. Review of the Draft 2014 Science Mission Directorate Science Plan comments on the responsiveness of SMD's Science Plan to the National Research Council's guidance on key science issues and opportunities in recent NRC decadal reports. This study focuses on attention to interdisciplinary aspects and overall scientific balance; identification and exposition of important opportunities for partnerships as well as education and public outreach; and integration of technology development with the science program. The report provides detailed findings and recommendations relating to the draft Science Plan.
NASA's Earth Science Division (ESD) conducts a wide range of satellite and suborbital missions to observe Earth's land surface and interior, biosphere, atmosphere, cryosphere, and oceans as part of a program to improve understanding of Earth as an integrated system. Earth observations provide the foundation for critical scientific advances and environmental data products derived from these observations are used in resource management and for an extraordinary range of societal applications including weather forecasts, climate projections, sea level change, water management, disease early warning, agricultural production, and the response to natural disasters. As the complexity of societal infrastructure and its vulnerability to environmental disruption increases, the demands for deeper scientific insights and more actionable information continue to rise. To serve these demands, NASA's ESD is challenged with optimizing the partitioning of its finite resources among measurements intended for exploring new science frontiers, carefully characterizing long-term changes in the Earth system, and supporting ongoing societal applications. This challenge is most acute in the decisions the Division makes between supporting measurement continuity of data streams that are critical components of Earth science research programs and the development of new measurement capabilities. This report seeks to establish a more quantitative understanding of the need for measurement continuity and the consequences of measurement gaps. Continuity of NASA's Earth's Observations presents a framework to assist NASA's ESD in their determinations of when a measurement or dataset should be collected for durations longer than the typical lifetimes of single satellite missions.
This is the fourth in a series of five letter reports that provide an independent review of the more than 30 evidence reports that NASA has compiled on human health risks for long-duration and exploration spaceflights.This letter report reviews eight evidence reports and examines the quality of the evidence, analysis, and overall construction of each report; identifies existing gaps in report content; and provides suggestions for additional sources of expert input.
On December 2-3, 2014, the Space Studies Board and the Board on Science Education of the National Research Council held a workshop on the NASA Science Mission Directorate (SMD) education program - "Sharing the Adventure with the Student." The workshop brought together representatives of the space science and science education communities to discuss maximizing the effectiveness of the transfer of knowledge from the scientists supported by NASA's SMD to K-12 students directly and to teachers and informal educators. The workshop focused not only on the effectiveness of recent models for transferring science content and scientific practices to students, but also served as a venue for dialogue between education specialists, education staff from NASA and other agencies, space scientists and engineers, and science content generators. Workshop participants reviewed case studies of scientists or engineers who were able to successfully translate their research results and research experiences into formal and informal student science learning. Education specialists shared how science can be translated to education materials and directly to students, and teachers shared their experiences of space science in their classrooms. Sharing the Adventure with the Student is the summary of the presentation and discussions of the workshop.
The 2011 National Research Council decadal survey on biological and physical sciences in space, Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era, was written during a critical period in the evolution of science in support of space exploration. The research agenda in space life and physical sciences had been significantly descoped during the programmatic adjustments of the Vision for Space Exploration in 2005, and this occurred in the same era as the International Space Station (ISS) assembly was nearing completion in 2011. Out of that period of change, Recapturing a Future for Space Exploration presented a cogent argument for the critical need for space life and physical sciences, both for enabling and expanding the exploration capabilities of NASA as well as for contributing unique science in many fields that can be enabled by access to the spaceflight environment. Since the 2011 publication of the decadal survey, NASA has seen tremendous change, including the retirement of the Space Shuttle Program and the maturation of the ISS. NASA formation of the Division of Space Life and Physical Sciences Research and Applications provided renewed focus on the research of the decadal survey. NASA has modestly regrown some of the budget of space life and physical sciences within the agency and engaged the U.S. science community outside NASA to join in this research. In addition, NASA has collaborated with the international space science community. This midterm assessment reviews NASA's progress since the 2011 decadal survey in order to evaluate the high-priority research identified in the decadal survey in light of future human Mars exploration. It makes recommendations on science priorities, specifically those priorities that best enable deep space exploration.
Fulfilling the President's Vision for Space Exploration (VSE) will require overcoming many challenges. Among these are the hazards of space radiation to crews traveling to the Moon and Mars. To explore these challenges in some depth and to examine ways to marshal research efforts to address them, NASA, NSF, and the NRC sponsored a workshop bringing together members of the space and planetary science, radiation physics, operations, and exploration engineering communities. The goals of the workshop were to increase understanding of the solar and space physics in the environment of Earth, the Moon, and Mars; to identify compelling relevant research goals; and discuss directions this research should take over the coming decade. This workshop report presents a discussion of radiation risks for the VSE, an assessment of specifying and predicting the space radiation environment, an analysis of operational strategies for space weather support, and a summary and conclusions of the workshop.
More than four decades have passed since a human first set foot on the Moon. Great strides have been made in our understanding of what is required to support an enduring human presence in space, as evidenced by progressively more advanced orbiting human outposts, culminating in the current International Space Station (ISS). However, of the more than 500 humans who have so far ventured into space, most have gone only as far as near-Earth orbit, and none have traveled beyond the orbit of the Moon. Achieving humans' further progress into the solar system had proved far more difficult than imagined in the heady days of the Apollo missions, but the potential rewards remain substantial. During its more than 50-year history, NASA's success in human space exploration has depended on the agency's ability to effectively address a wide range of biomedical, engineering, physical science, and related obstacles-an achievement made possible by NASA's strong and productive commitments to life and physical sciences research for human space exploration, and by its use of human space exploration infrastructures for scientific discovery. The Committee for the Decadal Survey of Biological and Physical Sciences acknowledges the many achievements of NASA, which are all the more remarkable given budgetary challenges and changing directions within the agency. In the past decade, however, a consequence of those challenges has been a life and physical sciences research program that was dramatically reduced in both scale and scope, with the result that the agency is poorly positioned to take full advantage of the scientific opportunities offered by the now fully equipped and staffed ISS laboratory, or to effectively pursue the scientific research needed to support the development of advanced human exploration capabilities. Although its review has left it deeply concerned about the current state of NASA's life and physical sciences research, the Committee for the Decadal Survey on Biological and Physical Sciences in Space is nevertheless convinced that a focused science and engineering program can achieve successes that will bring the space community, the U.S. public, and policymakers to an understanding that we are ready for the next significant phase of human space exploration. The goal of this report is to lay out steps and develop a forward-looking portfolio of research that will provide the basis for recapturing the excitement and value of human spaceflight-thereby enabling the U.S. space program to deliver on new exploration initiatives that serve the nation, excite the public, and place the United States again at the forefront of space exploration for the global good.
The purpose of this annex is to summarize the literature on non-targeted effects associated with exposure to ionizing radiation and, where possible, to evaluate how such effects may affect risks associated with radiation exposure, the understanding of radiation-induced carcinogenesis, and the mechanistic basis for interpreting epidemiological data on radiation effects.
As part of the Vision for Space Exploration (VSE), NASA is planning for humans to revisit the Moon and someday go to Mars. An important consideration in this effort is protection against the exposure to space radiation. That radiation might result in severe long-term health consequences for astronauts on such missions if they are not adequately shielded. To help with these concerns, NASA asked the NRC to further the understanding of the risks of space radiation, to evaluate radiation shielding requirements, and recommend a strategic plan for developing appropriate mitigation capabilities. This book presents an assessment of current knowledge of the radiation environment; an examination of the effects of radiation on biological systems and mission equipment; an analysis of current plans for radiation protection; and a strategy for mitigating the risks to VSE astronauts.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.