Critical Code contemplates Department of Defense (DoD) needs and priorities for software research and suggests a research agenda and related actions. Building on two prior booksâ€"Summary of a Workshop on Software Intensive Systems and Uncertainty at Scale and Preliminary Observations on DoD Software Research Needs and Prioritiesâ€"the present volume assesses the nature of the national investment in software research and, in particular, considers ways to revitalize the knowledge base needed to design, produce, and employ software-intensive systems for tomorrow's defense needs. Critical Code discusses four sets of questions: To what extent is software capability significant for the DoD? Is it becoming more or less significant and strategic in systems development? Will the advances in software producibility needed by the DoD emerge unaided from industry at a pace sufficient to meet evolving defense requirements? What are the opportunities for the DoD to make more effective use of emerging technology to improve software capability and software producibility? In which technology areas should the DoD invest in research to advance defense software capability and producibility?
The U.S. information technology (IT) research and development (R&D) ecosystem was the envy of the world in 1995. However, this position of leadership is not a birthright, and it is now under pressure. In recent years, the rapid globalization of markets, labor pools, and capital flows have encouraged many strong national competitors. During the same period, national policies have not sufficiently buttressed the ecosystem, or have generated side effects that have reduced its effectiveness. As a result, the U.S. position in IT leadership today has materially eroded compared with that of prior decades, and the nation risks ceding IT leadership to other nations within a generation. Assessing the Impacts of Changes in the Information Technology R&D Ecosystem calls for a recommitment to providing the resources needed to fuel U.S. IT innovation, to removing important roadblocks that reduce the ecosystem's effectiveness in generating innovation and the fruits of innovation, and to becoming a lead innovator and user of IT. The book examines these issues and makes recommendations to strengthen the U.S. IT R&D ecosystem.
The growing scale and complexity of software-intensive systems are introducing fundamental new challenges of uncertainty and scale that are particularly demanding for defense systems. To assist in meeting these challenges, the Department of Defense asked the NRC to assess the nature of U.S. national investment in software research. As part of this study, a workshop was held to examine uncertainty at scale in current and future software-intensive systems. This report presents a summary of the workshop discussions that centered on process, architecture, and the grand scale; DoD software challenges for future systems; agility at scale; quality and assurance with scale and uncertainty; and enterprise scale and beyond. The report also offers a summary of key themes emerging from the workshop: architectural challenges in large-scale systems; the need for software engineering capability; and open questions and research opportunities.
From the days of biplanes and open cockpits, the air forces of the United States have relied on the mastery of technology. From design to operation, a project can stretch to 20 years and more, with continuous increases in cost. Much of the delay and cost growth afflicting modern United States Air Force (USAF) programs is rooted in the incorporation of advanced technology into major systems acquisition. Leaders in the Air Force responsible for science and technology and acquisition are trying to determine the optimal way to utilize existing policies, processes, and resources to properly document and execute pre-program of record technology development efforts, including opportunities to facilitate the rapid acquisition of revolutionary capabilities and the more deliberate acquisition of evolutionary capabilities. Evaluation of U.S. Air Force Preacquisition Technology Development responds to this need with an examination of the current state of Air Force technology development and the environment in which technology is acquired. The book considers best practices from both government and industry to distill appropriate recommendations that can be implemented within the USAF.
The development and application of technology has been an essential part of U.S. airpower, leading to a century of air supremacy. But that developmental path has rarely been straight, and it has never been smooth. Only the extraordinary efforts of exceptional leadership - in the Air Forces and the wider Department of Defense, in science and in industry - have made the triumphs of military airpower possible. Development Planning provides recommendations to improve development planning for near-term acquisition projects, concepts not quite ready for acquisition, corporate strategic plans, and training of acquisition personnel. This report reviews past uses of development planning by the Air Force, and offers an organizational construct that will help the Air Force across its core functions. Developmental planning, used properly by experienced practitioners, can provide the Air Force leadership with a tool to answer the critical question, Over the next 20 years in 5-year increments, what capability gaps will the Air Force have that must be filled? Development planning will also provide for development of the workforce skills needed to think strategically and to defectively define and close the capability gap. This report describes what development planning could be and should be for the Air Force.
Critical Code contemplates Department of Defense (DoD) needs and priorities for software research and suggests a research agenda and related actions. Building on two prior booksâ€"Summary of a Workshop on Software Intensive Systems and Uncertainty at Scale and Preliminary Observations on DoD Software Research Needs and Prioritiesâ€"the present volume assesses the nature of the national investment in software research and, in particular, considers ways to revitalize the knowledge base needed to design, produce, and employ software-intensive systems for tomorrow's defense needs. Critical Code discusses four sets of questions: To what extent is software capability significant for the DoD? Is it becoming more or less significant and strategic in systems development? Will the advances in software producibility needed by the DoD emerge unaided from industry at a pace sufficient to meet evolving defense requirements? What are the opportunities for the DoD to make more effective use of emerging technology to improve software capability and software producibility? In which technology areas should the DoD invest in research to advance defense software capability and producibility?
Spacecraft require electrical energy. This energy must be available in the outer reaches of the solar system where sunlight is very faint. It must be available through lunar nights that last for 14 days, through long periods of dark and cold at the higher latitudes on Mars, and in high-radiation fields such as those around Jupiter. Radioisotope power systems (RPSs) are the only available power source that can operate unconstrained in these environments for the long periods of time needed to accomplish many missions, and plutonium-238 (238Pu) is the only practical isotope for fueling them. Plutonium-238 does not occur in nature. The committee does not believe that there is any additional 238Pu (or any operational 238Pu production facilities) available anywhere in the world.The total amount of 238Pu available for NASA is fixed, and essentially all of it is already dedicated to support several pending missions-the Mars Science Laboratory, Discovery 12, the Outer Planets Flagship 1 (OPF 1), and (perhaps) a small number of additional missions with a very small demand for 238Pu. If the status quo persists, the United States will not be able to provide RPSs for any subsequent missions.
The growing scale and complexity of software-intensive systems are introducing fundamental new challenges of uncertainty and scale that are particularly demanding for defense systems. To assist in meeting these challenges, the Department of Defense asked the NRC to assess the nature of U.S. national investment in software research. As part of this study, a workshop was held to examine uncertainty at scale in current and future software-intensive systems. This report presents a summary of the workshop discussions that centered on process, architecture, and the grand scale; DoD software challenges for future systems; agility at scale; quality and assurance with scale and uncertainty; and enterprise scale and beyond. The report also offers a summary of key themes emerging from the workshop: architectural challenges in large-scale systems; the need for software engineering capability; and open questions and research opportunities.
The growing scale and complexity of software-intensive systems are introducing fundamental new challenges of uncertainty and scale that are particularly demanding for defense systems. To assist in meeting these challenges, the Department of Defense asked the NRC to assess the nature of U.S. national investment in software research. As part of this study, a workshop was held to examine uncertainty at scale in current and future software-intensive systems. This report presents a summary of the workshop discussions that centered on process, architecture, and the grand scale; DoD software challenges for future systems; agility at scale; quality and assurance with scale and uncertainty; and enterprise scale and beyond. The report also offers a summary of key themes emerging from the workshop: architectural challenges in large-scale systems; the need for software engineering capability; and open questions and research opportunities.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.