Polarization propagators (PP) are powerful theoretical tools that allow carrying out a deep analysis of the electronic mechanisms underlying any molecular response property. The inner projections of the PP and contributions from localized orbitals within the PP approaches described in were developed to fully take advantage of this power of analysis for the study of NMR spectroscopic parameters. They are based on the use of localized molecular orbitals (LMOs) related to chemically intuitive concepts to decompose the mathematical expression of these parameters into coupling pathways or shielding pathways. Each of them may be furthermore decomposed into two new objects: (i) perturbators, which give information on the efficiency of a given magnetic perturbation to produce local excitations and (ii) the principal propagator matrix elements which provide deep understanding on the way perturbations are transmitted within the electronic framework of the molecule under study. Applications are presented in , both within semiempirical and ab initio approaches: the Karplus rule, a general analysis of the signs of J couplings, σ–π decomposition, hyperconjugative effects in transmission of J couplings, general features of 1J couplings, and intermolecular couplings in hydrogen-bonded systems. All applications were especially selected to cover examples in which qualitative physical insight can be gained.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.