The object of this book is two-fold -- on the one hand it conveys to mathematical readers a rigorous presentation and exploration of the important applications of analysis leading to numerical calculations. On the other hand, it presents physics readers with a body of theory in which the well-known formulae find their justification. The basic study of fundamental notions, such as Lebesgue integration and theory of distribution, allow the establishment of the following areas: Fourier analysis and convolution Filters and signal analysis time-frequency analysis (gabor transforms and wavelets). The whole is rounded off with a large number of exercises as well as selected worked-out solutions.
This book provides a comprehensive compilation of the evidence available regarding the role of genetic differences in the etiology of human obesities and their health and metabolic implications. It also identifies the most promising research areas, methods, and strategies for use in future efforts to understand the genetic basis of obesities and their consequences on human health. Leading researchers in their respective fields present contributed chapters on such topics as etiology and the prevalence of obesities, nongenetic determinants of obesity and fat topography, and animal models and molecular biological technology used to delineate the genetic basis of human obesities. A major portion of the book is devoted to human genetic research and clinical observations encompassing adoption studies, twin studies, family studies, single gene effects, temporal trends and etiology heterogeneity, energy intake and food preference, energy expenditure, and susceptibility to metabolic derangements in the obese state. Future directions of research in the field are covered in the book as well.
This book provides state-of-the-art results and theories in homogeneous turbulence, including anisotropy and compressibility effects with extension to quantum turbulence, magneto-hydodynamic turbulence and turbulence in non-newtonian fluids. Each chapter is devoted to a given type of interaction (strain, rotation, shear, etc.), and presents and compares experimental data, numerical results, analysis of the Reynolds stress budget equations and advanced multipoint spectral theories. The role of both linear and non-linear mechanisms is emphasized. The link between the statistical properties and the dynamics of coherent structures is also addressed. Despite its restriction to homogeneous turbulence, the book is of interest to all people working in turbulence, since the basic physical mechanisms which are present in all turbulent flows are explained. The reader will find a unified presentation of the results and a clear presentation of existing controversies. Special attention is given to bridge the results obtained in different research communities. Mathematical tools and advanced physical models are detailed in dedicated chapters.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.