The triple helix of university–industry–government interactions is a universal model for the development of the knowledge-based society, through innovation and entrepreneurship. It draws from the innovative practice of Massachusetts Institute of Technology (MIT) with industry and government in inventing a regional renewal strategy in early 20th-century New England. Parallel experiences were identified in “Silicon Valley,” where Stanford University works together with industry and government. Triple helix is identified as the secret of such innovative regions. It may also be found in statist or laissez-faire societies, globally. The triple helix focuses on “innovation in innovation” and the dynamic to foster an innovation ecosystem, through various hybrid organizations, such as technology transfer offices, venture capital firms, incubators, accelerators, and science parks. This second edition develops the practical and policy implications of the triple helix model with case studies exemplifying the meta-theory, including: • how to make an innovative region through the triple helix approach; • balancing development and sustainability by “triple helix twins"; • triple helix matrix to analyze regional innovation globally; and • case studies on the Stanford's StartX accelerator; the Ashland, Oregon Theater Arts Clusters; and Linyi regional innovation in China. The Triple Helix as a universal innovation model can assist students, researchers, managers, entrepreneurs, and policymakers to understand the roles of university, industry, and government in forming and developing “an innovative region,” which has self-renewal and sustainable innovative capacity.
This book first presents a tutorial on Federated Learning (FL) and its role in enabling Edge Intelligence over wireless edge networks. This provides readers with a concise introduction to the challenges and state-of-the-art approaches towards implementing FL over the wireless edge network. Then, in consideration of resource heterogeneity at the network edge, the authors provide multifaceted solutions at the intersection of network economics, game theory, and machine learning towards improving the efficiency of resource allocation for FL over the wireless edge networks. A clear understanding of such issues and the presented theoretical studies will serve to guide practitioners and researchers in implementing resource-efficient FL systems and solving the open issues in FL respectively.
Cooperative Control of Multi-Agent Systems: An Optimal and Robust Perspective reports and encourages technology transfer in the field of cooperative control of multi-agent systems. The book deals with UGVs, UAVs, UUVs and spacecraft, and more. It presents an extended exposition of the authors' recent work on all aspects of multi-agent technology. Modelling and cooperative control of multi-agent systems are topics of great interest, across both academia (research and education) and industry (for real applications and end-users). Graduate students and researchers from a wide spectrum of specialties in electrical, mechanical or aerospace engineering fields will use this book as a key resource. - Helps shape the reader's understanding of optimal and robust cooperative control design techniques for multi-agent systems - Presents new theoretical control challenges and investigates unresolved/open problems - Explores future research trends in multi-agent systems - Offers a certain amount of analytical mathematics, practical numerical procedures, and actual implementations of some proposed approaches
Extension innovation method is an approach to originality generation. It utilizes basic theories of Extenics, a new discipline for modeling contradiction problems with formalized methods and transformation, to establish a modeling and quantification combined method that can be learned effortlessly and operated conveniently. This book introduces and analyzes commonly used extension innovation methods are introduced and analyzed thoroughly. It makes it easy for readers at different levels and of different knowledge backgrounds to study. Highly accessible cases faciliate understanding and application of the models.
Against the background of the Australian government’s strategic plan to promote Asian languages in schools, this book is an innovative autoethnographic inquiry into what actually occurs in the implementation of a Chinese language and culture program in an Australian context. Drawing on eight years of socio-cultural and educational fieldwork in a primary school, Chunyan Zhang examines complex, fluid and heterogeneous daily teaching practices and the ways in which ideas of China are assembled, presented and performed. She asks the following questions: What is China? Where does Taiwan fit into the China depicted in a multicultural, globalised classroom? Can Chinese communism or Chairman Mao be avoided in teaching English-speaking learners? What kind of China is brought in here while what kind of China is being silenced and othered? Through the partial connection between method assemblage and Daoist concepts, Zhang develops a water-like pedagogy in teaching. She uses the knowledge flow model to examine the imbalanced knowledge flow within teacher-student interactions. From finding China as a hybrid assemblage to proposing China as method, Zhang’s investigation makes an important contribution to the sociology of Chinese language education. This book is an essential and rich content resource for primary and secondary teacher education and research, teacher candidates and educators in Chinese as a second language education.
This book presents a concise introduction to the latest advances in robust cooperative control design for multi-agent systems with input delay and external disturbances, especially from a prediction and observation perspective. The volume covers a wide range of applications, such as the trajectory tracking of quadrotors, formation flying of multiple unmanned aerial vehicles (UAVs) and fixed-time formation of ground vehicles. Robust cooperative control means that multi-agent systems are able to achieve specified control tasks while remaining robust in the face of both parametric and nonparametric model uncertainties. In addition, the authors cover a wide range of key issues in cooperative control, such as communication and input delays, parametric model uncertainties and external disturbances. Moving beyond the scope of existing works, a systematic prediction and observation approach to designing robust cooperative control laws is presented. About the Authors Chunyan Wang is an Associate Professor in the School of Aerospace Engineering at Beijing Institute of Technology, China. Zongyu Zuo is a full Professor with the School of Automation Science and Electrical Engineering, Beihang University, China. Jianan Wang is an Associate Professor in the School of Aerospace Engineering at Beijing Institute of Technology, China. Zhengtao Ding is a Professor in the Department of Electrical and Electronic Engineering at University of Manchester, U.K.
This is a textbook for non-atmospheric specialists who work in the coastal zone. Its purpose will be to help coastal environmental, engineering, and planning professionals to understand coastal atmospheric processes. This in turn will allow more effective communication with climate modelers, atmospheric environmental consultants, and members of the media. The coastal environment is among the most intensively used and chronically abused components of the Earth-ocean-atmosphere system. It is also home to an ever-increasing proportion of humanity with their increasing development, trade, transportation, and industrial activities, amid increasing impacts of natural hazards. The atmosphere is an integral part of the system, with all of the above human activities affecting and being affected by atmospheric processes and hazards. Yet few of the specialists studying the coastal environment have expertise on atmospheric processes, this therefore presents a highly relevant textbook on coastal atmospheric processes.
This book belongs to the field of intelligent vehicle control, which is dedicated to the research of nonlinear control problems of intelligent vehicle chassis-by-wire systems. Through the nonlinear stability control of the steer-by-wire system and the consistency optimization control of the brake-by-wire system, the performance of the vehicle subsystem is improved. Then, the decoupling control of the nonlinear inverse system is used to realize the decoupling of the chassis-by-wire system. Finally, this book further adopts nonlinear rollover prevention integrated control to improve the rollover prevention performance of the vehicle.
The triple helix of university–industry–government interactions is a universal model for the development of the knowledge-based society, through innovation and entrepreneurship. It draws from the innovative practice of Massachusetts Institute of Technology (MIT) with industry and government in inventing a regional renewal strategy in early 20th-century New England. Parallel experiences were identified in “Silicon Valley,” where Stanford University works together with industry and government. Triple helix is identified as the secret of such innovative regions. It may also be found in statist or laissez-faire societies, globally. The triple helix focuses on “innovation in innovation” and the dynamic to foster an innovation ecosystem, through various hybrid organizations, such as technology transfer offices, venture capital firms, incubators, accelerators, and science parks. This second edition develops the practical and policy implications of the triple helix model with case studies exemplifying the meta-theory, including: • how to make an innovative region through the triple helix approach; • balancing development and sustainability by “triple helix twins"; • triple helix matrix to analyze regional innovation globally; and • case studies on the Stanford's StartX accelerator; the Ashland, Oregon Theater Arts Clusters; and Linyi regional innovation in China. The Triple Helix as a universal innovation model can assist students, researchers, managers, entrepreneurs, and policymakers to understand the roles of university, industry, and government in forming and developing “an innovative region,” which has self-renewal and sustainable innovative capacity.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.