This book looks to expand on the relationship between Christoffel words and Markoff theory. Part 1 focuses on the classical theory of Markoff, while part II explores the more advanced and recent results around Christoffel words.
This book constitutes the refereed proceedings of the 15th IAPR International Conference on Discrete Geometry for Computer Imagery, DGCI 2009, held in Montréal, Canada, in September/October 2009. The 42 revised full papers were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on discrete shape, representation, recognition and analysis; discrete and combinatorial tools for image segmentation and analysis; discrete and combinatorial Topology; models for discrete geometry; geometric transforms; and discrete tomography.
This major revision of Berstel and Perrin's classic Theory of Codes has been rewritten with a more modern focus and a much broader coverage of the subject. The concept of unambiguous automata, which is intimately linked with that of codes, now plays a significant role throughout the book, reflecting developments of the last 20 years. This is complemented by a discussion of the connection between codes and automata, and new material from the field of symbolic dynamics. The authors have also explored links with more practical applications, including data compression and cryptography. The treatment remains self-contained: there is background material on discrete mathematics, algebra and theoretical computer science. The wealth of exercises and examples make it ideal for self-study or courses. In summary, this is a comprehensive reference on the theory of variable-length codes and their relation to automata.
This book looks to expand on the relationship between Christoffel words and Markoff theory. Part 1 focuses on the classical theory of Markoff, while part II explores the more advanced and recent results around Christoffel words.
This major revision of Berstel and Perrin's classic Theory of Codes has been rewritten with a more modern focus and a much broader coverage of the subject. The concept of unambiguous automata, which is intimately linked with that of codes, now plays a significant role throughout the book, reflecting developments of the last 20 years. This is complemented by a discussion of the connection between codes and automata, and new material from the field of symbolic dynamics. The authors have also explored links with more practical applications, including data compression and cryptography. The treatment remains self-contained: there is background material on discrete mathematics, algebra and theoretical computer science. The wealth of exercises and examples make it ideal for self-study or courses. In summary, this is a comprehensive reference on the theory of variable-length codes and their relation to automata.
This book constitutes the refereed proceedings of the 15th IAPR International Conference on Discrete Geometry for Computer Imagery, DGCI 2009, held in Montréal, Canada, in September/October 2009. The 42 revised full papers were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on discrete shape, representation, recognition and analysis; discrete and combinatorial tools for image segmentation and analysis; discrete and combinatorial Topology; models for discrete geometry; geometric transforms; and discrete tomography.
This major revision of Berstel and Perrin's classic Theory of Codes has been rewritten with a more modern focus and a much broader coverage of the subject. The concept of unambiguous automata, which is intimately linked with that of codes, now plays a significant role throughout the book, reflecting developments of the last 20 years. This is complemented by a discussion of the connection between codes and automata, and new material from the field of symbolic dynamics. The authors have also explored links with more practical applications, including data compression and cryptography. The treatment remains self-contained: there is background material on discrete mathematics, algebra and theoretical computer science. The wealth of exercises and examples make it ideal for self-study or courses. In summary, this is a comprehensive reference on the theory of variable-length codes and their relation to automata.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.