Written by an international group of experts, Ground Improvement Case Histories: Chemical, Electrokinetic, Thermal and Bioengineering Methods provides over 700 pages of case-histories collected from all over the world. Each case-history provides an overview of the specific technology followed by applications, and in some cases, comprehensive back analysis through numerical modelling is discussed. The book includes methods for employing bacterial and biological treatment, and native vegetation for stabilizing problematic soils. Specific case-histories included in the book are: Effect of Drainage and Grouting for the World Longest Seikan Undersea Tunnel Construction, Cement/lime Mixing Ground Improvement for Road Construction on Soft Ground, Use of Jet Grouting in Deep Excavations, and Stabilization of Reactive Sulphide Mine Tailings using Water Cover Technology. - Provides recent case histories using chemical and bio-engineering methods by world-renowned engineering experts - Includes over 200 illustrations and 150 equations from relevant topics, including state-of-the-art chemical and bioengineering methods - Presents comprehensive analysis methods using numerical modelling methods - Case histories include the "Effect of Drainage and Grouting on the World's Longest Seikan Undersea Tunnel Construction" and "Cement/Lime Mixing Ground Improvement for Road Construction on Soft Ground
Ballast plays a vital role in transmitting and distributing train wheel loads to the underlying sub-ballast and subgrade. Bearing capacity of track, train speed, riding quality and passenger comfort all depend on the stability of ballast through mechanical interlocking of particles. Ballast attrition and breakage occur progressively under heavy cyc
Written by an international group of contributors, Ground Improvement Case Histories: Compaction, Grouting and Geosynthetics provides over 700 pages of international case-histories. Each case-history provides an overview of the specific technology followed by applications, with some cases offering a comprehensive back-analysis through numerical modelling. Specific case-histories include: The Use of Alternative and Improved Construction Materials and Geosynthetics in Pavements, Case Histories of Embankments on Soft Soils and Stabilisation with Geosynthetics, Ground Improvement with Geotextile Reinforcements, Use of Geosynthetics to aid Construction over Soft Soils and Soil Improvement and Foundation Systems with Encased Columns and Reinforced Bearing Layers. - Comprehensive analysis methods using numerical modelling methods - Features over 700 pages of contributor generated case-histories from all over the world - Offers field data and clear observations based on the practical aspects of the construction procedures and treatment effectiveness
- The first book of its kind, providing over thirty real-life case studies of ground improvement projects selected by the worlds top experts in ground improvement from around the globe. - Volume 3 of the highly regarded Elsevier Geo-engineering book series coordinated by the Series Editor: Professor John A Hudson FREng. - An extremely reader friendly chapter format. - Discusses wider economical and environmental issues facing scientists in the ground improvement.Ground improvement has been both a science and art, with significant developments observed through ancient history. From the use of straw as blended infill with soils for additional strength during the ancient Roman civilizations, and the use of elephants for compaction of earth dams during the early Asian civilizations, the concepts of reinforced earth with geosynthetics, use of electrokinetics and thermal modifications of soils have come a long way. The use of large and stiff stone columns and subsequent sand drains in the past has now been replaced by quicker to install and more effective prefabricated vertical drains, which have also eliminated the need for more expensive soil improvement methods.The early selection and application of the most appropriate ground improvement techniques can improve considerably not only the design and performance of foundations and earth structures, including embankments, cut slopes, roads, railways and tailings dams, but also result in their cost-effectiveness. Ground improvement works have become increasingly challenging when more and more problematic soils and marginal land have to be utilized for infrastructure development.This edited compilation contains a collection of Chapters from invited experts in various areas of ground improvement, who have illustrated the basic concepts and the applications of different ground improvement techniques using real projects that they have been involved in. The case histories from many countries ranging from Asia, America, Australia and Europe are addressed.
Ballast plays a vital role in transmitting and distributing the train wheel loads to the underlying track substructure. The load-bearing capacity, safe train speed, and the levels of noise and vibration, as well as passenger comfort depend on the behaviour of ballast through particle interlocking and the corresponding deformation of this granular assembly. Attrition and breakage of ballast occur progressively under heavy and continual cyclic loading, causing track deterioration and rail misalignment affecting safety, while exacerbating the intensity of track maintenance. In the absence of realistic computational models, the track substructure is traditionally designed using mostly empirical approaches. In this book, the authors present the detailed information on the strength, deformation, and degradation aspects of fresh and recycled ballast under monotonic, cyclic, and impact loading using innovative geotechnical testing devices. A constitutive model for ballast incorporating particle breakage is presented representing a more realistic stress–strain response. The mathematical formulations and numerical models are validated using controlled experimental simulations and fully instrumented field trials. Revised ballast gradation is described to provide greater track resiliency and extended longevity. The book also provides a detailed description of geosynthetics for substructure improvement considering track deterioration caused by particle degradation, fouling, and impeded drainage. New to this second edition are extensive discussions on subgrade soil stabilisation, causes and mechanisms of soil fluidisation (mud pumping) under cyclic loading, and preventive and remedial measures to alleviate undue instability of ballast tracks. This book should prove most beneficial for final-year civil engineering students and for postgraduate teaching and learning. It is an ideal supplement for practising railway engineers and researchers engaged in the challenging tasks of future track design for heavier and faster trains.
Ballast plays a vital role in transmitting and distributing train wheel loads to the underlying sub-ballast and subgrade. Bearing capacity of track, train speed, riding quality and passenger comfort all depend on the stability of ballast through mechanical interlocking of particles. Ballast attrition and breakage occur progressively under heavy cyc
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.