This comprehensive text provides an excellent introduction to the state of the art in the identification of network-connected systems. It covers models and methods in detail, includes a case study showing how many of these methods are applied in adaptive optics and addresses open research questions. Specific models covered include generic modelling for MIMO LTI systems, signal flow models of dynamic networks and models of networks of local LTI systems. A variety of different identification methods are discussed, including identification of signal flow dynamics networks, subspace-like identification of multi-dimensional systems and subspace identification of local systems in an NDS. Researchers working in system identification and/or networked systems will appreciate the comprehensive overview provided, and the emphasis on algorithm design will interest those wishing to test the theory on real-life applications. This is the ideal text for researchers and graduate students interested in system identification for networked systems.
This book is intended for researchers active in the field of (blind) system identification and aims to provide new identification ideas/insights for dealing with challenging system identification problems. It presents a comprehensive overview of the state-of-the-art in the area, which would save a lot of time and avoid collecting the scattered information from research papers, reports and unpublished work. Besides, it is a self-contained book by including essential algebraic, system and optimization theories, which can help graduate students enter the amazing blind system identification world with less effort.
This comprehensive text provides an excellent introduction to the state of the art in the identification of network-connected systems. It covers models and methods in detail, includes a case study showing how many of these methods are applied in adaptive optics and addresses open research questions. Specific models covered include generic modelling for MIMO LTI systems, signal flow models of dynamic networks and models of networks of local LTI systems. A variety of different identification methods are discussed, including identification of signal flow dynamics networks, subspace-like identification of multi-dimensional systems and subspace identification of local systems in an NDS. Researchers working in system identification and/or networked systems will appreciate the comprehensive overview provided, and the emphasis on algorithm design will interest those wishing to test the theory on real-life applications. This is the ideal text for researchers and graduate students interested in system identification for networked systems.
This book is intended for researchers active in the field of (blind) system identification and aims to provide new identification ideas/insights for dealing with challenging system identification problems. It presents a comprehensive overview of the state-of-the-art in the area, which would save a lot of time and avoid collecting the scattered information from research papers, reports and unpublished work. Besides, it is a self-contained book by including essential algebraic, system and optimization theories, which can help graduate students enter the amazing blind system identification world with less effort.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.