Combinatorics and Graph Theory is designed as a textbook for undergraduate students of computer science and engineering and postgraduate students of computer applications. The book seeks to introduce students to the mathematical concepts needed to develop abstract thinking and problem solving—important prerequisites for the study of computer science. The book provides an exhaustive coverage of various concepts and remarkable introduction of several topics of combinatorics and graph theory. The book presents an informative exposure for beginners and acts as a reference for advanced students. It highlights comprehensive and rigorous views of combinatorics and graphs. The text shows simplicity and step-by-step concepts throughout and is profusely illustrated with diagrams. The real-world applications corresponding to the topics are appropriately highlighted. The chapters have also been interspersed throughout with numerous interesting and instructional notes. Written in a lucid style, the book helps students apply the mathematical tools to computer-related concepts and consists of around 600 worked-out examples which motivate students as a self-learning mode.KEY FEATURES Contains various exercises with their answers or hints. Lays emphasis on the applicability of mathematical structures to computer science. Includes competitive examinations’ questions asked in GATE, NET, SET, etc
A Geometry of Approximation' addresses Rough Set Theory, a field of interdisciplinary research first proposed by Zdzislaw Pawlak in 1982, and focuses mainly on its logic-algebraic interpretation. The theory is embedded in a broader perspective that includes logical and mathematical methodologies pertaining to the theory, as well as related epistemological issues. Any mathematical technique that is introduced in the book is preceded by logical and epistemological explanations. Intuitive justifications are also provided, insofar as possible, so that the general perspective is not lost. Such an approach endows the present treatise with a unique character. Due to this uniqueness in the treatment of the subject, the book will be useful to researchers, graduate and pre-graduate students from various disciplines, such as computer science, mathematics and philosophy. It features an impressive number of examples supported by about 40 tables and 230 figures. The comprehensive index of concepts turns the book into a sort of encyclopaedia for researchers from a number of fields. 'A Geometry of Approximation' links many areas of academic pursuit without losing track of its focal point, Rough Sets.
This book (Vistas II), is a sequel to Vistas of Special Functions (World Scientific, 2007), in which the authors made a unification of several formulas scattered around the relevant literature under the guiding principle of viewing them as manifestations of the functional equations of associated zeta-functions. In Vista II, which maintains the spirit of the theory of special functions through zeta-functions, the authors base their theory on a theorem which gives some arithmetical Fourier series as intermediate modular relations ? avatars of the functional equations. Vista II gives an organic and elucidating presentation of the situations where special functions can be effectively used. Vista II will provide the reader ample opportunity to find suitable formulas and the means to apply them to practical problems for actual research. It can even be used during tutorials for paper writing.
Providing a single-valued assessment of the performance of a process is often one of the greatest challenges for a quality professional. Process Capability Indices (PCIs) precisely do this job. For processes having a single measurable quality characteristic, there is an ample number of PCIs, defined in literature. The situation worsens for multivariate processes, i.e., where there is more than one correlated quality characteristic. Since in most situations quality professionals face multiple quality characteristics to be controlled through a process, Multivariate Process Capability Indices (MPCIs) become the order of the day. However, there is no book which addresses and explains different MPCIs and their properties. The literature of Multivariate Process Capability Indices (MPCIs) is not well organized, in the sense that a thorough and systematic discussion on the various MPCIs is hardly available in the literature. Handbook of Multivariate Process Capability Indices provides an extensive study of the MPCIs defined for various types of specification regions. This book is intended to help quality professionals to understand which MPCI should be used and in what situation. For researchers in this field, the book provides a thorough discussion about each of the MPCIs developed to date, along with their statistical and analytical properties. Also, real life examples are provided for almost all the MPCIs discussed in the book. This helps both the researchers and the quality professionals alike to have a better understanding of the MPCIs, which otherwise become difficult to understand, since there is more than one quality characteristic to be controlled at a time. Features: A complete guide for quality professionals on the usage of different MPCIs. A step by step discussion on multivariate process capability analysis, starting from a brief discussion on univariate indices. A single source for all kinds of MPCIs developed so far. Comprehensive analysis of the MPCIs, including analysis of real-life data. References provided at the end of each chapter encompass the entire literature available on the respective topic. Interpretation of the MPCIs and development of threshold values of many MPCIs are also included. This reference book is aimed at the post graduate students in Industrial Statistics. It will also serve researchers working in the field of Industrial Statistics, as well as practitioners requiring thorough guidance regarding selection of an appropriate MPCI suitable for the problem at hand.
Brings together in one place the fundamental theory and models, and the practical aspects of submicron particle engineering This book attempts to resolve the tricky aspects of engineering submicron particles by discussing the fundamental theories of frequently used research tools—both theoretical and experimental. The first part covers the Fundamental Models and includes sections on nucleation, growth, inter-molecular and inter-particle forces, colloidal stability, and kinetics. The second part examines the Modelling of a Suspension and features chapters on fundamental concepts of particulate systems, writing the number balance, modelling systems with particle breakage and aggregation, and Monte Carlo simulation. The book also offers plenty of diagrams, software, examples, brief experimental demonstrations, and exercises with answers. Engineering of Submicron Particles: Fundamental Concepts and Models offers a lengthy discussion of classical nucleation theory, and introduces other nucleation mechanisms like organizer mechanisms. It also looks at older growth models like diffusion controlled or surface nucleation controlled growth, along with new generation models like connected net analysis. Aggregation models and inter-particle potentials are touched upon in a prelude on intermolecular and surface forces. The book also provides analytical and numerical solutions of population balance models so readers can solve basic population balance equations independently. Presents the fundamental theory, practical aspects, and models of submicron particle engineering Teaches readers to write number balances for their own system of interest Provides software with open code for solution of population balance model through discretization Filled with diagrams, examples, demonstrations, and exercises Engineering of Submicron Particles: Fundamental Concepts and Models will appeal to researchers in chemical engineering, physics, chemistry, engineering, and mathematics concerned with particulate systems. It is also a good text for advanced students taking particle technology courses.
Design for security and meet real-time requirements with this must-have book covering basic theory, hardware design and implementation of cryptographic algorithms, and side channel analysis. Presenting state-of-the-art research and strategies for the design of very large scale integrated circuits and symmetric cryptosystems, the text discusses hardware intellectual property protection, obfuscation and physically unclonable functions, Trojan threats, and algorithmic- and circuit-level countermeasures for attacks based on power, timing, fault, cache, and scan chain analysis. Gain a comprehensive understanding of hardware security from fundamentals to practical applications.
Soft computing is a branch of computer science that deals with a family of methods that imitate human intelligence. This is done with the goal of creating tools that will contain some human-like capabilities (such as learning, reasoning and decision-making). This book covers the entire gamut of soft computing, including fuzzy logic, rough sets, artificial neural networks, and various evolutionary algorithms. It offers a learner-centric approach where each new concept is introduced with carefully designed examples/instances to train the learner.
This book sketches a road map of privatisation, accumulation and dispossession of communal land in the tribal areas of North East India from pre-colonial times to the neo-liberal era. Spread over five chapters, this study unfolds the privatisation of communal land in the backdrop of a larger theoretical and historical canvas. It deals with the different institutional modes of privatisation, accumulation and dispossession of communal land, the changes in land use and cropping patterns, the changes in land relations and the land-based identity of the tribal community as a result. The conclusive chapter makes a broader reflection of the grand narrative of privatisation, accumulation and dispossession of communal land in North East India. This title is co-published with Aakar Books. Print edition not for sale in South Asia (India, Sri Lanka, Nepal, Bangladesh, Pakistan and Bhutan)
This thesis explores the connection between gravity and thermodynamics and provides a unification scheme that opens up new directions of exploration. Further elaborating on the Hawking effect and the possibility of singularity avoidance, the author not only discusses the information loss paradox at a broader level but also provides a possible solution to it. As the final frontier, it describes some novel effects arising from the microscopic structure of spacetime. Taken as a whole, the thesis addresses three major research areas in gravitational physics: it starts with classical gravity, proceeds to the black hole information loss paradox, and closes with Planck scale physics. The thesis is written in a lucid and pedagogical style, with an introduction accessible to researchers from other branches of physics and a d iscussion presenting open questions and future directions, which will benefit and hopefully inspire next-generation researchers.
This book provides an overview of fake news detection, both through a variety of tutorial-style survey articles that capture advancements in the field from various facets and in a somewhat unique direction through expert perspectives from various disciplines. The approach is based on the idea that advancing the frontier on data science approaches for fake news is an interdisciplinary effort, and that perspectives from domain experts are crucial to shape the next generation of methods and tools. The fake news challenge cuts across a number of data science subfields such as graph analytics, mining of spatio-temporal data, information retrieval, natural language processing, computer vision and image processing, to name a few. This book will present a number of tutorial-style surveys that summarize a range of recent work in the field. In a unique feature, this book includes perspective notes from experts in disciplines such as linguistics, anthropology, medicine and politics that will help to shape the next generation of data science research in fake news. The main target groups of this book are academic and industrial researchers working in the area of data science, and with interests in devising and applying data science technologies for fake news detection. For young researchers such as PhD students, a review of data science work on fake news is provided, equipping them with enough know-how to start engaging in research within the area. For experienced researchers, the detailed descriptions of approaches will enable them to take seasoned choices in identifying promising directions for future research.
This Book Presents A Systematic Exposition Of The Fundamental Principles Involved In Plasma Mechanics. It Also Highlights Some Of The Recent Developments In The Area.The Book Emphasises The Following Topics: * Magnetization By Inverse Faraday Effect * Ionospheric Cross Modulation * Relativistic Vlasov Equations For Waves In Plasmas * Kinetic Theory Of Vlasov For Plasmoidal Equilibrium Structures * Formalism Of Transformation From Laboratory Frame To A Space Independent Frame For Study Of Dispersive Wave.With Its Comprehensive Approach And Detailed Treatment, The Book Would Serve As An Excellent Text For M.Sc. Physics Students As Well As Research Scholars.
This book offers a rigorous mathematical analysis of fuzzy geometrical ideas. It demonstrates the use of fuzzy points for interpreting an imprecise location and for representing an imprecise line by a fuzzy line. Further, it shows that a fuzzy circle can be used to represent a circle when its description is not known precisely, and that fuzzy conic sections can be used to describe imprecise conic sections. Moreover, it discusses fundamental notions on fuzzy geometry, including the concepts of fuzzy line segment and fuzzy distance, as well as key fuzzy operations, and includes several diagrams and numerical illustrations to make the topic more understandable. The book fills an important gap in the literature, providing the first comprehensive reference guide on the fuzzy mathematics of imprecise image subsets and imprecise geometrical objects. Mainly intended for researchers active in fuzzy optimization, it also includes chapters relevant for those working on fuzzy image processing and pattern recognition. Furthermore, it is a valuable resource for beginners interested in basic operations on fuzzy numbers, and can be used in university courses on fuzzy geometry, dealing with imprecise locations, imprecise lines, imprecise circles, and imprecise conic sections.
The aim of the book is to give a smooth analytic continuation from calculus to complex analysis by way of plenty of practical examples and worked-out exercises. The scope ranges from applications in calculus to complex analysis in two different levels.If the reader is in a hurry, he can browse the quickest introduction to complex analysis at the beginning of Chapter 1, which explains the very basics of the theory in an extremely user-friendly way. Those who want to do self-study on complex analysis can concentrate on Chapter 1 in which the two mainstreams of the theory — the power series method due to Weierstrass and the integration method due to Cauchy — are presented in a very concrete way with rich examples. Readers who want to learn more about applied calculus can refer to Chapter 2, where numerous practical applications are provided. They will master the art of problem solving by following the step by step guidance given in the worked-out examples.This book helps the reader to acquire fundamental skills of understanding complex analysis and its applications. It also gives a smooth introduction to Fourier analysis as well as a quick prelude to thermodynamics and fluid mechanics, information theory, and control theory. One of the main features of the book is that it presents different approaches to the same topic that aids the reader to gain a deeper understanding of the subject.
This book highlights the need for studying multi-state models analytically for understanding the physics of molecular processes. An intuitive picture about recently solved models of statistical and quantum mechanics is drawn along with presenting the methods developed to solve them. The models are relevant in the context of molecular processes taking place in gaseous phases and condensed phases, emphasized in the introduction. Chapter 1 derives the arisal of multi-state models for molecular processes from the full Hamiltonian description. The model equations are introduced and the literature review presented in short. In Chapter 2, the time-domain methods to solve Smoluchowski-based reaction-diffusion systems with single-state and two-state descriptions are discussed. Their corresponding analytical results derive new equilibrium concepts in reversible reactions and studies the effect of system and molecular parameters in condensed-phase chemical dynamics. In Chapter 3, time-domain methods to solve quantum scattering problems are developed. Along side introducing a brand new solvable model in quantum scattering, it discusses transient features of quantum two-state models. In interest with electronic transitions, a new solvable two-state model with localized non-adiabatic coupling is also presented. The book concludes by proposing the future scope of the model, thereby inviting new research in this fundamentally important and rich applicable field.
This book (Vista II), is a sequel to Vistas of Special Functions (World Scientific, 2007), in which the authors made a unification of several formulas scattered around the relevant literature under the guiding principle of viewing them as manifestations of the functional equations of associated zeta-functions. In Vista II, which maintains the spirit of the theory of special functions through zeta-functions, the authors base their theory on a theorem which gives some arithmetical Fourier series as intermediate modular relations — avatars of the functional equations. Vista II gives an organic and elucidating presentation of the situations where special functions can be effectively used. Vista II will provide the reader ample opportunity to find suitable formulas and the means to apply them to practical problems for actual research. It can even be used during tutorials for paper writing.
This book introduces the theory of graded consequence (GCT) and its mathematical formulation. It also compares the notion of graded consequence with other notions of consequence in fuzzy logics, and discusses possible applications of the theory in approximate reasoning and decision-support systems. One of the main points where this book emphasizes on is that GCT maintains the distinction between the three different levels of languages of a logic, namely object language, metalanguage and metametalanguage, and thus avoids the problem of violation of the principle of use and mention; it also shows, gathering evidences from existing fuzzy logics, that the problem of category mistake may arise as a result of not maintaining distinction between levels.
Emotional Intelligence is a new discipline of knowledge, dealing with modeling, recognition and control of human emotions. The book Emotional Intelligence: A Cybernetic Approach, to the best of the authors’ knowledge is a first compreh- sive text of its kind that provides a clear introduction to the subject in a precise and insightful writing style. It begins with a philosophical introduction to E- tional Intelligence, and gradually explores the mathematical models for emotional dynamics to study the artificial control of emotion using music and videos, and also to determine the interactions between emotion and logic from the points of view of reasoning. The later part of the book covers the chaotic behavior of - existing emotions under certain conditions of emotional dynamics. Finally, the book attempts to cluster emotions using electroencephalogram signals, and d- onstrates the scope of application of emotional intelligence in several engineering systems, such as human-machine interfaces, psychotherapy, user assistance s- tems, and many others. The book includes ten chapters. Chapter 1 provides an introduction to the s- ject from a philosophical and psychological standpoint. It outlines the fundamental causes of emotion arousal, and typical characteristics of the phenomenon of an emotive experience. The relation between emotion and rationality of thoughts is also introduced here. Principles of natural regulation of emotions are discussed in brief, and the biological basis of emotion arousal using an affective neu- scientific model is introduced next.
This text demystifies the subject of operating systems by using a simple step-by-step approach, from fundamentals to modern concepts of traditional uniprocessor operating systems, in addition to advanced operating systems on various multiple-processor platforms and also real-time operating systems (RTOSs). While giving insight into the generic operating systems of today, its primary objective is to integrate concepts, techniques, and case studies into cohesive chapters that provide a reasonable balance between theoretical design issues and practical implementation details. It addresses most of the issues that need to be resolved in the design and development of continuously evolving, rich, diversified modern operating systems and describes successful implementation approaches in the form of abstract models and algorithms. This book is primarily intended for use in undergraduate courses in any discipline and also for a substantial portion of postgraduate courses that include the subject of operating systems. It can also be used for self-study. Key Features • Exhaustive discussions on traditional uniprocessor-based generic operating systems with figures, tables, and also real-life implementations of Windows, UNIX, Linux, and to some extent Sun Solaris. • Separate chapter on security and protection: a grand challenge in the domain of today’s operating systems, describing many different issues, including implementation in modern operating systems like UNIX, Linux, and Windows. • Separate chapter on advanced operating systems detailing major design issues and salient features of multiple-processor-based operating systems, including distributed operating systems. Cluster architecture; a low-cost base substitute for true distributed systems is explained including its classification, merits, and drawbacks. • Separate chapter on real-time operating systems containing fundamental topics, useful concepts, and major issues, as well as a few different types of real-life implementations. • Online Support Material is provided to negotiate acute page constraint which is exclusively a part and parcel of the text delivered in this book containing the chapter-wise/topic-wise detail explanation with representative figures of many important areas for the completeness of the narratives.
Statistical Methods for Dynamic Treatment Regimes shares state of the art of statistical methods developed to address questions of estimation and inference for dynamic treatment regimes, a branch of personalized medicine. This volume demonstrates these methods with their conceptual underpinnings and illustration through analysis of real and simulated data. These methods are immediately applicable to the practice of personalized medicine, which is a medical paradigm that emphasizes the systematic use of individual patient information to optimize patient health care. This is the first single source to provide an overview of methodology and results gathered from journals, proceedings, and technical reports with the goal of orienting researchers to the field. The first chapter establishes context for the statistical reader in the landscape of personalized medicine. Readers need only have familiarity with elementary calculus, linear algebra, and basic large-sample theory to use this text. Throughout the text, authors direct readers to available code or packages in different statistical languages to facilitate implementation. In cases where code does not already exist, the authors provide analytic approaches in sufficient detail that any researcher with knowledge of statistical programming could implement the methods from scratch. This will be an important volume for a wide range of researchers, including statisticians, epidemiologists, medical researchers, and machine learning researchers interested in medical applications. Advanced graduate students in statistics and biostatistics will also find material in Statistical Methods for Dynamic Treatment Regimes to be a critical part of their studies.
The Up-to-Date Guide to Complex Networks for Students, Researchers, and Practitioners Networks with complex and irregular connectivity patterns appear in biology, chemistry, communications, social networks, transportation systems, power grids, the Internet, and many big data applications. Complex Networks offers a novel engineering perspective on these networks, focusing on their key communications, networking, and signal processing dimensions. Three leading researchers draw on recent advances to illuminate the design and characterization of complex computer networks and graph signal processing systems. The authors cover both the fundamental concepts underlying graph theory and complex networks, as well as current theory and research. They discuss spectra and signal processing in complex networks, graph signal processing approaches for extracting information from structural data, and advanced techniques for multiscale analysis. What makes networks complex, and how to successfully characterize them Graph theory foundations, definitions, and concepts Full chapters on small-world, scale-free, small-world wireless mesh, and small-world wireless sensor networks Complex network spectra and graph signal processing concepts and techniques Multiscale analysis via transforms and wavelets
A timely book containing foundations and current research directions on emotion recognition by facial expression, voice, gesture and biopotential signals This book provides a comprehensive examination of the research methodology of different modalities of emotion recognition. Key topics of discussion include facial expression, voice and biopotential signal-based emotion recognition. Special emphasis is given to feature selection, feature reduction, classifier design and multi-modal fusion to improve performance of emotion-classifiers. Written by several experts, the book includes several tools and techniques, including dynamic Bayesian networks, neural nets, hidden Markov model, rough sets, type-2 fuzzy sets, support vector machines and their applications in emotion recognition by different modalities. The book ends with a discussion on emotion recognition in automotive fields to determine stress and anger of the drivers, responsible for degradation of their performance and driving-ability. There is an increasing demand of emotion recognition in diverse fields, including psycho-therapy, bio-medicine and security in government, public and private agencies. The importance of emotion recognition has been given priority by industries including Hewlett Packard in the design and development of the next generation human-computer interface (HCI) systems. Emotion Recognition: A Pattern Analysis Approach would be of great interest to researchers, graduate students and practitioners, as the book Offers both foundations and advances on emotion recognition in a single volume Provides a thorough and insightful introduction to the subject by utilizing computational tools of diverse domains Inspires young researchers to prepare themselves for their own research Demonstrates direction of future research through new technologies, such as Microsoft Kinect, EEG systems etc.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.