Chemical process quantitative risk analysis (CPQRA) as applied to the CPI was first fully described in the first edition of this CCPS Guidelines book. This second edition is packed with information reflecting advances in this evolving methodology, and includes worked examples on a CD-ROM. CPQRA is used to identify incident scenarios and evaluate their risk by defining the probability of failure, the various consequences and the potential impact of those consequences. It is an invaluable methodology to evaluate these when qualitative analysis cannot provide adequate understanding and when more information is needed for risk management. This technique provides a means to evaluate acute hazards and alternative risk reduction strategies, and identify areas for cost-effective risk reduction. There are no simple answers when complex issues are concerned, but CPQRA2 offers a cogent, well-illustrated guide to applying these risk-analysis techniques, particularly to risk control studies. Special Details: Includes CD-ROM with example problems worked using Excel and Quattro Pro. For use with Windows 95, 98, and NT.
Guidelines for Hazard Evaluation Procedures, 3rd Edition keeps process engineers updated on the effective methodologies that process safety demands. Almost 200 pages of worked examples are included to facilitate understanding. References for further reading, along with charts and diagrams that reflect the latest views and information, make this a completely accessible work. The revised and updated edition includes information not included in previous editions giving a comprehensive overview of this topic area.
This new initiative demonstrates a process and tools for managing the security vulnerability of sites that produce and handle chemicals, petroleum products, pharmaceuticals, and related materials such as fertilizers and water treatment chemicals. Includes: enterprise screening; site screening; protection analysis; security vulnerability assessment; action planning and tracking.
Written by a committee of safety professionals, this book creates a foundation document for the development and application of risk tolerance criteria Helps safety managers evaluate the frequency, severity and consequence of human injury Includes examples of risk tolerance criteria used by NASA, Earthquake Response teams and the International Maritime Organization, amongst others Helps achieve consistency in risk-based decision-making Reduces potential liabilities in the use of quantitative risk tolerance criteria through reference to an industry guidance document
Increased automation reduces the potential for operator error, but introduces the possibility of new types of errors in design and maintenance. This book provides designers and operators of chemical process facilities with a general philosophy and approach to safe automation, including independent layers of safety.
The process industry has developed integrated process safety management programs to reduce or eliminate incidents and major consequences, such as injury, loss of life, property damage, environmental harm, and business interruption. Good documentation practices are a crucial part of retaining past knowledge and experience, and avoiding relearning old lessons. Following an introduction, which offers examples of how proper documentation might have prevented major explosions and serious incidents, the 21 sections in this book clearly present aims, goals, and methodology in all areas of documentation. The text contains examples of dozens of needed forms, lists of relevant industry organizations, sources for software, references, OSHA regulations, sample plans, and more.
While there are many resources available on fire protection and prevention in chemical petrochemical and petroleum plants—this is the first book that pulls them all together in one comprehensive resource. This book provides the tools to develop, implement, and integrate a fire protection program into a company or facility’s Risk Management System. This definitive volume is a must-read for loss prevention managers, site managers, project managers, engineers and EHS professionals. Note: CD-ROM/DVD and other supplementary materials are not included as part of eBook file.
This Guidelines book provides technical information on how to conduct a consequence analysis to satisfy your company's needs and the EPA rules. It covers quantifying the size of a release, dispersion of vapor clouds to an endpoint concentration, outcomes for various types of explosions and fires, and the effect of the release on people and structures. Special Details: Includes CD-ROM with example problems worked using Excel and Quattro Pro. For use with Windows 95, 98, and NT.
Process Safety for Engineers Familiarizes an engineer new to process safety with the concept of process safety management In this significantly revised second edition of Process Safety for Engineers: An Introduction, CCPS delivers a comprehensive book showing how Process Safety concepts are used to reduce operational risks. Students, new engineers, and others new to process safety will benefit from this book. In this updated edition, each chapter begins with a detailed incident case study, provides steps that help address issues, and contains problem sets which can be assigned to students. The second edition covers: Process Safety: including an overview of CCPS’ Risk Based Process Safety Hazards: specifically fire and explosion, reactive chemical, and toxicity Design considerations for hazard control: including Hazard Identification and Risk Analysis Management of operational risk: including management of change In addition, the book presents how Process Safety performance is monitored and sustained. The associated online resources are linked to the latest online CCPS resources and lectures.
There is much industry guidance on implementing engineering projects and a similar amount of guidance on Process Safety Management (PSM). However, there is a gap in transferring the key deliverables from the engineering group to the operations group, where PSM is implemented. This book provides the engineering and process safety deliverables for each project phase along with the impacts to the project budget, timeline and the safety and operability of the delivered equipment.
The book makes the case for process safety and provides a brief overviews of the upstream industry and of CCPS Risk Based Process Safety. The majority of the book focuses on the concepts of implementing process safety in wells, onshore, offshore, and projects. Topics include Overview of Upstream Operations; Overview of Risk Based Process Safety (RBPS); Application of RBPS in Drilling, Completions, Work-Overs & Interventions, Application of RBPS in Onshore Production, Application of RBPS in Offshore Production, Application of RBPS to Engineering Design, Installation, and Construction, Future Developments in the Field
Dedicated to the Memory and Spirit of Donald F. Othmer Though there are many industry practices for building design and siting, they do not always apply to all sectors of the industry, or ensure consistent levels of safety. This practical book, written by the same author as API Recommended Practice 752, provides the details to implement the recommended practice, "Management of Hazards Associated with Location of Process Plant Buildings." Its contents include safety guidelines on fire and explosion risks to process plant buildings as a result of events external to the building, which can apply across the spectrum of industries, and to conditions at any site. The book also offers guidance on assessing, screening, and managing risks associated with building design and siting. Two appendices give extensive coverage of explosion and fire phenomena, and effects and principles of blast-resistant design.
Inherently safer plants begin with the initial design. Here is where integrity and reliability can be built in at the lowest cost, and with maximum effectiveness. This book focuses on process safety issues in the design of chemical, petrochemical, and hydrocarbon processing facilities. It discusses how to select designs that can prevent or mitigate the release of flammable or toxic materials, which could lead to a fire, explosion, or environmental damage. All engineers on the design team, the process hazard analysis team, and those who make basic decisions on plant design, will benefit from its comprehensive coverage, its organization, and the extensive references to literature, codes, and standards that accompany each chapter.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.