EMBEDDED DIGITAL CONTROL WITH MICROCONTROLLERS Explore a concise and practical introduction to implementation methods and the theory of digital control systems on microcontrollers Embedded Digital Control with Microcontrollers delivers expert instruction in digital control system implementation techniques on the widely used ARM Cortex-M microcontroller. The accomplished authors present the included information in three phases. First, they describe how to implement prototype digital control systems via the Python programming language in order to help the reader better understand theoretical digital control concepts. Second, the book offers readers direction on using the C programming language to implement digital control systems on actual microcontrollers. This will allow readers to solve real-life problems involving digital control, robotics, and mechatronics. Finally, readers will learn how to merge the theoretical and practical issues discussed in the book by implementing digital control systems in real-life applications. Throughout the book, the application of digital control systems using the Python programming language ensures the reader can apply the theory contained within. Readers will also benefit from the inclusion of: A thorough introduction to the hardware used in the book, including STM32 Nucleo Development Boards and motor drive expansion boards An exploration of the software used in the book, including Python, MicroPython, and Mbed Practical discussions of digital control basics, including discrete-time signals, discrete-time systems, linear and time-invariant systems, and constant coefficient difference equations An examination of how to represent a continuous-time system in digital form, including analog-to-digital conversion and digital-to-analog conversion Perfect for undergraduate students in electrical engineering, Embedded Digital Control with Microcontrollers will also earn a place in the libraries of professional engineers and hobbyists working on digital control and robotics systems seeking a one-stop reference for digital control systems on microcontrollers.
This book presents a comprehensive review of image processing methods, for the analysis of land use in residential areas. Combining a theoretical framework with highly practical applications, the book describes a system for the effective detection of single houses and streets in very high resolution. Topics and features: with a Foreword by Prof. Dr. Peter Reinartz of the German Aerospace Center; provides end-of-chapter summaries and review questions; presents a detailed review on remote sensing satellites; examines the multispectral information that can be obtained from satellite images, with a focus on vegetation and shadow-water indices; investigates methods for land-use classification, introducing precise graph theoretical measures over panchromatic images; addresses the problem of detecting residential regions; describes a house and street network-detection subsystem; concludes with a summary of the key ideas covered in the book.
Change detection using remotely sensed images has many applications, such as urban monitoring, land-cover change analysis, and disaster management. This work investigates two-dimensional change detection methods. The existing methods in the literature are grouped into four categories: pixel-based, transformation-based, texture analysis-based, and structure-based. In addition to testing existing methods, four new change detection methods are introduced: fuzzy logic-based, shadow detection-based, local feature-based, and bipartite graph matching-based. The latter two methods form the basis for a structural analysis of change detection. Three thresholding algorithms are compared, and their effects on the performance of change detection methods are measured. These tests on existing and novel change detection methods make use of a total of 35 panchromatic and multi-spectral Ikonos image sets. Quantitative test results and their interpretations are provided.
This textbook introduces basic and advanced embedded system topics through Arm Cortex M microcontrollers, covering programmable microcontroller usage starting from basic to advanced concepts using the STMicroelectronics Discovery development board. Designed for use in upper-level undergraduate and graduate courses on microcontrollers, microprocessor systems, and embedded systems, the book explores fundamental and advanced topics, real-time operating systems via FreeRTOS and Mbed OS, and then offers a solid grounding in digital signal processing, digital control, and digital image processing concepts — with emphasis placed on the usage of a microcontroller for these advanced topics. The book uses C language, “the” programming language for microcontrollers, C++ language, and MicroPython, which allows Python language usage on a microcontroller. Sample codes and course slides are available for readers and instructors, and a solutions manual is available to instructors. The book will also be an ideal reference for practicing engineers and electronics hobbyists who wish to become familiar with basic and advanced microcontroller concepts.
Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. MASTER THE MSP430 MICROCONTROLLER AND DEVELOPMENT PLATFORM Expand your electronics design skills to include the MSP430 family of ultra-low-power microprocessors with help from this practical guide. Programmable Microcontrollers with Applications: MSP430 LaunchPad with CCS and Grace thoroughly explains each concept and provides illustrated examples and projects. Find out how to configure the MSP430, efficiently program custom functions, process analog and digital signals, and interface with external components. Sample code and reference information are available on the companion website. COVERAGE INCLUDES: * Digital circuit and microcontroller fundamentals* MSP430 architecture and CCS development environment* LaunchPad platform and Grace configuration tool * C and Assembly language programming and debugging * Interrupts, digital I/O, and D/A and A/D converters * Data storage and coding practices for flash memory * Oscillators, clocks, low-power modes, and timers * Digital and analog communication ports and protocols * Schematics and assembly instructions for 12 projects
Develop and Deploy Powerful MSP432 Microcontroller Applications Bolster your electronics skills and learn to work with the cutting-edge MSP432 microcontroller using the practical information contained in this comprehensive guide. Programmable Microcontrollers: Applications on the MSP432 LaunchPad clearly explains each concept and features detailed illustrations, real-world examples, and DIY projects. Discover how to configure the MSP432, program custom functions, interface with external hardware, and communicate via WiFi. Ideal for practicing engineers and hobbyists alike, this hands-on guide empowers you to program all microcontrollers by thoroughly understanding the MSP432. Coverage includes: •MSP432 architecture •Code Composer Studio (CCS) •CCS Cloud and Energia •MSP432 programming with C and Assembly •Digital I/O •Exceptions and interrupts •Power management and timing operations •Mixed signal systems •Digital and wireless communication •Flash memory, RAM, and direct memory access •Real-time operating system •Advanced applications
Master FPGA digital system design and implementation with Verilog and VHDL This practical guide explores the development and deployment of FPGA-based digital systems using the two most popular hardware description languages, Verilog and VHDL. Written by a pair of digital circuit design experts, the book offers a solid grounding in FPGA principles, practices, and applications and provides an overview of more complex topics. Important concepts are demonstrated through real-world examples, ready-to-run code, and inexpensive start-to-finish projects for both the Basys and Arty boards. Digital System Design with FPGA: Implementation Using Verilog and VHDL covers: • Field programmable gate array fundamentals • Basys and Arty FPGA boards • The Vivado design suite • Verilog and VHDL • Data types and operators • Combinational circuits and circuit blocks • Data storage elements and sequential circuits • Soft-core microcontroller and digital interfacing • Advanced FPGA applications • The future of FPGA
Master FPGA digital system design and implementation with Verilog and VHDL This practical guide explores the development and deployment of FPGA-based digital systems using the two most popular hardware description languages, Verilog and VHDL. Written by a pair of digital circuit design experts, the book offers a solid grounding in FPGA principles, practices, and applications and provides an overview of more complex topics. Important concepts are demonstrated through real-world examples, ready-to-run code, and inexpensive start-to-finish projects for both the Basys and Arty boards. Digital System Design with FPGA: Implementation Using Verilog and VHDL covers: • Field programmable gate array fundamentals • Basys and Arty FPGA boards • The Vivado design suite • Verilog and VHDL • Data types and operators • Combinational circuits and circuit blocks • Data storage elements and sequential circuits • Soft-core microcontroller and digital interfacing • Advanced FPGA applications • The future of FPGA
This textbook introduces basic and advanced embedded system topics through Arm Cortex M microcontrollers, covering programmable microcontroller usage starting from basic to advanced concepts using the STMicroelectronics Discovery development board. Designed for use in upper-level undergraduate and graduate courses on microcontrollers, microprocessor systems, and embedded systems, the book explores fundamental and advanced topics, real-time operating systems via FreeRTOS and Mbed OS, and then offers a solid grounding in digital signal processing, digital control, and digital image processing concepts — with emphasis placed on the usage of a microcontroller for these advanced topics. The book uses C language, “the” programming language for microcontrollers, C++ language, and MicroPython, which allows Python language usage on a microcontroller. Sample codes and course slides are available for readers and instructors, and a solutions manual is available to instructors. The book will also be an ideal reference for practicing engineers and electronics hobbyists who wish to become familiar with basic and advanced microcontroller concepts.
Change detection using remotely sensed images has many applications, such as urban monitoring, land-cover change analysis, and disaster management. This work investigates two-dimensional change detection methods. The existing methods in the literature are grouped into four categories: pixel-based, transformation-based, texture analysis-based, and structure-based. In addition to testing existing methods, four new change detection methods are introduced: fuzzy logic-based, shadow detection-based, local feature-based, and bipartite graph matching-based. The latter two methods form the basis for a structural analysis of change detection. Three thresholding algorithms are compared, and their effects on the performance of change detection methods are measured. These tests on existing and novel change detection methods make use of a total of 35 panchromatic and multi-spectral Ikonos image sets. Quantitative test results and their interpretations are provided.
This book presents a comprehensive review of image processing methods, for the analysis of land use in residential areas. Combining a theoretical framework with highly practical applications, the book describes a system for the effective detection of single houses and streets in very high resolution. Topics and features: with a Foreword by Prof. Dr. Peter Reinartz of the German Aerospace Center; provides end-of-chapter summaries and review questions; presents a detailed review on remote sensing satellites; examines the multispectral information that can be obtained from satellite images, with a focus on vegetation and shadow-water indices; investigates methods for land-use classification, introducing precise graph theoretical measures over panchromatic images; addresses the problem of detecting residential regions; describes a house and street network-detection subsystem; concludes with a summary of the key ideas covered in the book.
MASTER THE MSP430 MICROCONTROLLER AND DEVELOPMENT PLATFORM Expand your electronics design skills to include the MSP430 family of ultra-low-power microprocessors with help from this practical guide. Programmable Microcontrollers with Applications: MSP430 LaunchPad with CCS and Grace thoroughly explains each concept and provides illustrated examples and projects. Find out how to configure the MSP430, efficiently program custom functions, process analog and digital signals, and interface with external components. Sample code and reference information are available on the companion website. COVERAGE INCLUDES: * Digital circuit and microcontroller fundamentals * MSP430 architecture and CCS development environment * LaunchPad platform and Grace configuration tool * C and Assembly language programming and debugging * Interrupts, digital I/O, and D/A and A/D converters * Data storage and coding practices for flash memory * Oscillators, clocks, low-power modes, and timers * Digital and analog communication ports and protocols * Schematics and assembly instructions for 12 projects
Develop and Deploy Powerful MSP432 Microcontroller Applications Bolster your electronics skills and learn to work with the cutting-edge MSP432 microcontroller using the practical information contained in this comprehensive guide. Programmable Microcontrollers: Applications on the MSP432 LaunchPad clearly explains each concept and features detailed illustrations, real-world examples, and DIY projects. Discover how to configure the MSP432, program custom functions, interface with external hardware, and communicate via WiFi. Ideal for practicing engineers and hobbyists alike, this hands-on guide empowers you to program all microcontrollers by thoroughly understanding the MSP432. Coverage includes: •MSP432 architecture •Code Composer Studio (CCS) •CCS Cloud and Energia •MSP432 programming with C and Assembly •Digital I/O •Exceptions and interrupts •Power management and timing operations •Mixed signal systems •Digital and wireless communication •Flash memory, RAM, and direct memory access •Real-time operating system •Advanced applications
EMBEDDED DIGITAL CONTROL WITH MICROCONTROLLERS Explore a concise and practical introduction to implementation methods and the theory of digital control systems on microcontrollers Embedded Digital Control with Microcontrollers delivers expert instruction in digital control system implementation techniques on the widely used ARM Cortex-M microcontroller. The accomplished authors present the included information in three phases. First, they describe how to implement prototype digital control systems via the Python programming language in order to help the reader better understand theoretical digital control concepts. Second, the book offers readers direction on using the C programming language to implement digital control systems on actual microcontrollers. This will allow readers to solve real-life problems involving digital control, robotics, and mechatronics. Finally, readers will learn how to merge the theoretical and practical issues discussed in the book by implementing digital control systems in real-life applications. Throughout the book, the application of digital control systems using the Python programming language ensures the reader can apply the theory contained within. Readers will also benefit from the inclusion of: A thorough introduction to the hardware used in the book, including STM32 Nucleo Development Boards and motor drive expansion boards An exploration of the software used in the book, including Python, MicroPython, and Mbed Practical discussions of digital control basics, including discrete-time signals, discrete-time systems, linear and time-invariant systems, and constant coefficient difference equations An examination of how to represent a continuous-time system in digital form, including analog-to-digital conversion and digital-to-analog conversion Perfect for undergraduate students in electrical engineering, Embedded Digital Control with Microcontrollers will also earn a place in the libraries of professional engineers and hobbyists working on digital control and robotics systems seeking a one-stop reference for digital control systems on microcontrollers.
This book presents a comprehensive review of image processing methods, for the analysis of land use in residential areas. Combining a theoretical framework with highly practical applications, the book describes a system for the effective detection of single houses and streets in very high resolution. Topics and features: with a Foreword by Prof. Dr. Peter Reinartz of the German Aerospace Center; provides end-of-chapter summaries and review questions; presents a detailed review on remote sensing satellites; examines the multispectral information that can be obtained from satellite images, with a focus on vegetation and shadow-water indices; investigates methods for land-use classification, introducing precise graph theoretical measures over panchromatic images; addresses the problem of detecting residential regions; describes a house and street network-detection subsystem; concludes with a summary of the key ideas covered in the book.
Change detection using remotely sensed images has many applications, such as urban monitoring, land-cover change analysis, and disaster management. This work investigates two-dimensional change detection methods. The existing methods in the literature are grouped into four categories: pixel-based, transformation-based, texture analysis-based, and structure-based. In addition to testing existing methods, four new change detection methods are introduced: fuzzy logic-based, shadow detection-based, local feature-based, and bipartite graph matching-based. The latter two methods form the basis for a structural analysis of change detection. Three thresholding algorithms are compared, and their effects on the performance of change detection methods are measured. These tests on existing and novel change detection methods make use of a total of 35 panchromatic and multi-spectral Ikonos image sets. Quantitative test results and their interpretations are provided.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.