Although research in architectural synthesis has been conducted for over ten years it has had very little impact on industry. This in our view is due to the inability of current architectural synthesizers to provide area-delay competitive (or "optimal") architectures, that will support interfaces to analog, asynchronous, and other complex processes. They also fail to incorporate testability. The OASIC (optimal architectural synthesis with interface constraints) architectural synthesizer and the CATREE (computer aided trees) synthesizer demonstrate how these problems can be solved. Traditionally architectural synthesis is viewed as NP hard and there fore most research has involved heuristics. OASIC demonstrates by using an IP approach (using polyhedral analysis), that most input algo rithms can be synthesized very fast into globally optimal architectures. Since a mathematical model is used, complex interface constraints can easily be incorporated and solved. Research in test incorporation has in general been separate from syn thesis research. This is due to the fact that traditional test research has been at the gate or lower level of design representation. Nevertheless as technologies scale down, and complexity of design scales up, the push for reducing testing times is increased. On way to deal with this is to incorporate test strategies early in the design process. The second half of this text examines an approach for integrating architectural synthesis with test incorporation. Research showed that test must be considered during synthesis to provide good architectural solutions which minimize Xlll area delay cost functions.
Although security is prevalent in PCs, wireless communications and other systems today, it is expected to become increasingly important and widespread in many embedded devices. For some time, typical embedded system designers have been dealing with tremendous challenges in performance, power, price and reliability. However now they must additionally deal with definition of security requirements, security design and implementation. Given the limited number of security engineers in the market, large background of cryptography with which these standards are based upon, and difficulty of ensuring the implementation will also be secure from attacks, security design remains a challenge. This book provides the foundations for understanding embedded security design, outlining various aspects of security in devices ranging from typical wireless devices such as PDAs through to contactless smartcards to satellites.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.