This textbook acts as a pathway to higher mathematics by seeking and illuminating the connections between graph theory and diverse fields of mathematics, such as calculus on manifolds, group theory, algebraic curves, Fourier analysis, cryptography and other areas of combinatorics. An overview of graph theory definitions and polynomial invariants for graphs prepares the reader for the subsequent dive into the applications of graph theory. To pique the reader’s interest in areas of possible exploration, recent results in mathematics appear throughout the book, accompanied with examples of related graphs, how they arise, and what their valuable uses are. The consequences of graph theory covered by the authors are complicated and far-reaching, so topics are always exhibited in a user-friendly manner with copious graphs, exercises, and Sage code for the computation of equations. Samples of the book’s source code can be found at github.com/springer-math/adventures-in-graph-theory. The text is geared towards advanced undergraduate and graduate students and is particularly useful for those trying to decide what type of problem to tackle for their dissertation. This book can also serve as a reference for anyone interested in exploring how they can apply graph theory to other parts of mathematics.
This volume contains the proceedings of an AMS special session held at the 1999 Joint Mathematics Meetings in San Antonio. The participants were an international group of researchers studying singularities from algebraic and analytic viewpoints. The contributed papers contain original results as well as some expository and historical material. This volume is dedicated to Oscar Zariski, on the one hundredth anniversary of his birth. Topics include the role of valuation theory in algebraic geometry with recent applications to the structure of morphisms; algorithmic approaches to resolution of equisingular surface singularities and locally toric varieties; weak subintegral closures of ideals and Rees valuations; constructions of universal weakly subintegral extensions of rings; direct-sum decompositions of finitely generated modules; construction and examples of resolution graphs of surface singularities; Jacobians of meromorphic curves; investigation of spectral numbers of curve singularities using Puiseux pairs; Gröbner basis calculations of Hochschild homology for hypersurfaces with isolated singularities; and the theory of characteristic classes of singular spaces - a brief history with conjectures and open problems.
This textbook acts as a pathway to higher mathematics by seeking and illuminating the connections between graph theory and diverse fields of mathematics, such as calculus on manifolds, group theory, algebraic curves, Fourier analysis, cryptography and other areas of combinatorics. An overview of graph theory definitions and polynomial invariants for graphs prepares the reader for the subsequent dive into the applications of graph theory. To pique the reader’s interest in areas of possible exploration, recent results in mathematics appear throughout the book, accompanied with examples of related graphs, how they arise, and what their valuable uses are. The consequences of graph theory covered by the authors are complicated and far-reaching, so topics are always exhibited in a user-friendly manner with copious graphs, exercises, and Sage code for the computation of equations. Samples of the book’s source code can be found at github.com/springer-math/adventures-in-graph-theory. The text is geared towards advanced undergraduate and graduate students and is particularly useful for those trying to decide what type of problem to tackle for their dissertation. This book can also serve as a reference for anyone interested in exploring how they can apply graph theory to other parts of mathematics.
This volume contains the proceedings of an AMS special session held at the 1999 Joint Mathematics Meetings in San Antonio. The participants were an international group of researchers studying singularities from algebraic and analytic viewpoints. The contributed papers contain original results as well as some expository and historical material. This volume is dedicated to Oscar Zariski, on the one hundredth anniversary of his birth. Topics include the role of valuation theory in algebraic geometry with recent applications to the structure of morphisms; algorithmic approaches to resolution of equisingular surface singularities and locally toric varieties; weak subintegral closures of ideals and Rees valuations; constructions of universal weakly subintegral extensions of rings; direct-sum decompositions of finitely generated modules; construction and examples of resolution graphs of surface singularities; Jacobians of meromorphic curves; investigation of spectral numbers of curve singularities using Puiseux pairs; Gröbner basis calculations of Hochschild homology for hypersurfaces with isolated singularities; and the theory of characteristic classes of singular spaces - a brief history with conjectures and open problems.
This book presents the proceedings of two conferences, Resolution des singularites et geometrie non commutative and the Annapolis algebraic geometry conference. Research articles in the volume cover various topics of algebraic geometry, including the theory of Jacobians, singularities, applications to cryptography, and more. The book is suitable for graduate students and research mathematicians interested in algebraic geometry.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.