Concentrator Photovoltaics (CPV) is one of the most promising technologies to produce solar electricity at competitive prices. High performing CPV systems with efficiencies well over 30% and multi-megawatt CPV plants are now a reality. As a result of these achievements, the global CPV market is expected to grow dramatically over the next few years reaching cumulative installed capacity of 12.5 GW by 2020. In this context, both new and consolidated players are moving fast to gain a strategic advantage in this emerging market. Written with clear, brief and self-contained technical explanations, Handbook of Concentrator Photovoltaic Technology provides a complete overview of CPV covering: the fundamentals of solar radiation, solar cells, concentrator optics, modules and trackers; all aspects of characterization and reliability; case studies based on the description of actual systems and plants in the field; environmental impact, market potential and cost analysis. CPV technology is at a key point of expansion. This timely handbook aims to provide a comprehensive assessment of all CPV scientific, technological and engineering background with a view to equipping engineers and industry professionals with all of the vital information they need to help them sustain the impetus of this encouraging technology. Key features: Uniquely combines an explanation of the fundamentals of CPV systems and components with an overview of the market place and their real-life applications. Each chapter is written by well-known industry specialists with extensive expertise in each particular field of CPV technology. Reviews the basic concepts of multi-junction solar cells and new concepts for CPV cells, highlighting the key differences between them. Demonstrates the state of the art of several CPV centres and companies. Facilitates future cost calculation models for CPV. Features extensive case studies in each chapter, including coverage of CPV modules and systems.
This book discusses building-integrated photovoltaic systems (BIPV) and provides solutions for solving problems related to designing, sizing and monitoring a BIPV that has been used to replace conventional building materials in parts of the building envelope such as the roof, skylights or facades. The book begins by introducing the basics to readers interested in learning about this technology and then outlines in an accessible way, a practical development plan for the installation and monitoring of these systems in residential, industrial, and commercial buildings. Chapters discuss the needs of installing, designing, and sizing and provide a financial analysis for a successful implementation of a BIPV system. This book is a useful tool for renewable energy designers, energy contractors, architects, government institutions, and those in the academic community who are interested in seamlessly integrating solar panels into the construction phase of new building projects or retrofitted into existing buildings.
Fundamentals of Renewable Energy Processes, Fourth Edition, winner of a 2022 Textbook Excellence Award (Texty) from the Textbook and Academic Authors Association, provides accessible coverage of clean, safe alternative energy sources such as solar and wind power. Aldo da Rosa's classic and comprehensive resource has provided thousands of engineers, scientists, students and professionals alike with a thorough grounding in the scientific principles underlying the complex world of renewable energy technologies. The fourth edition has been fully updated and revised by new author Juan Ordonez, Director of the Energy and Sustainability Center at Florida State University, and includes new worked examples, more exercises, and more illustrations to help facilitate student learning. - Illuminates the basic principles behind all key renewable power sources, including solar, wind, biomass, hydropower and fuel cells - Connects scientific theory with practical implementation through physical examples and end-of-chapter questions of increasing difficulty to help readers apply their knowledge - Offers completely revised content for better student accessibility - Updated with expanded coverage of such topics as solar thermal processes, hydropower and renewable energy storage technologies
This book presents a series of significant methods and examples for the design of sustainable intelligent facades in a variety of contexts. Emphasis is placed on how intelligence has been applied for successful energy-saving efforts in the planning of building envelopes. Readers will find essential information on the core principles involved in designing, calculating and organizing intelligent facades according to the need for a new or retrofitted building. Not only are different materials and technologies considered, but also efficient ways to combine them according to user needs and other project-specific constraints. Illustrations, tables and graphs accompany the text, clarifying the concepts discussed. Architects, facade consultants and all those interested in and energy-saving measures and improved indoor comfort will find this book useful not only as an introduction to the subject but also as a guide to achieving more responsive building methods.
This book discusses in detail the CMOS implementation of energy harvesting. The authors describe an integrated, indoor light energy harvesting system, based on a controller circuit that dynamically and automatically adjusts its operation to meet the actual light circumstances of the environment where the system is placed. The system is intended to power a sensor node, enabling an autonomous wireless sensor network (WSN). Although designed to cope with indoor light levels, the system is also able to work with higher levels, making it an all-round light energy harvesting system. The discussion includes experimental data obtained from an integrated manufactured prototype, which in conjunction with a photovoltaic (PV) cell, serves as a proof of concept of the desired energy harvesting system.
This book presents a study to determine the current limitations in the area of Photovoltaics (PV) as a source of renewable energy and proposes strategies to overcome them by applying optimization approaches in three main areas, namely related to photovoltaic solar cells, modules, and systems. These include grid metallization design of Si-based solar cells and modules; cost-effectiveness analysis between Si-based monofacial and bifacial grid-connected PV systems; optimal diesel replacement strategy for the progressive introduction of PV and batteries; dispatch strategy optimization for PV hybrid systems in real time. The novelty of the work presented in this book is of high interest to the scientific community but also to the PV manufacturers, installation companies, and investors.
The 127th edition of the Statistical Abstract of the United States continues a proud tradition of presenting a comprehensive and useful portrait of the social, political, and economic organization of the United States. The 2008 edition provides: More than 1,300 tables and graphs on topics such as births and deaths, education, government finances, homeland security, income, poverty, and information technology. Expanded guide to other sources of statistical information both in print and on the Web. Listing of metropolitan and micropolitan areas and their population numbers. Book jacket.
Scientific Study from the year 2000 in the subject Physics - Theoretical Physics, University of Barcelona, language: English, abstract: The Background Field (BF) is an advanced figurative quantum model of the Zero-Point Field, the probable origin of inertia, gravity and EM fields. It explains too, why the speed of light is limited, and unclear phenomena like "antigravitation" and the "Tunnel Effect" by means of interactions between elementary particles and the BF. The BF fills up the whole universe and represents therefore a resistance to any moving particle, even to light. Our universe consists of a BF located inside an absolute void space. We can imagine the BF as a 3-D matrix of virtual gravitons linked by strings. The tension of the strings produce the resistance, we know as "inertia". Contraction of the BF produces gravitation, while a spinning BF produces EM-fields. If we made a "hole" in the BF, this hole would have no more any inherent resistance, thus allowing to increase the velocity of particles beyond "c". Such tiny holes in the BF are probably the origin of the "Tunnel Effect". This effect is the first evidence for the BF. A second evidence for the BF is the higher temperature of the solar corona (up to 2x106°C) with respect to the photosphere (5,500°C) due to the high pressure of radiation that just leaves the material surface of the sun and produces large "holes" in the surrounding BF. The lack of resistance in such holes allows photons to accelerate beyond "c", thus gaining more energy and making increase the temperature in the corona. Furthermore, if antigravitation resulted to be real, it would be the third evidence for this model, since it would be the result of competition between EM and gravitational fields for virtual particles derived from the BF. Experimental evidence of the BF would be the prediction that "c" increases in the outer space where the BF is less dense and inertia less intense. An anomalous behavior of gravitational attraction
With the holistic wisdom of Deepak Chopra and the healing honesty of John Bradshaw, renowned physician and psychotherapist Carlos Warter leads us on a powerful journey toward the "divine self". These meditations, visualizations, and inspiring stories from around the world can help us "discover our true essence, reach our full potential, and heal the planet".
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.