The study of classical electromagnetic fields is an adventure. The theory is complete mathematically and we are able to present it as an example of classical Newtonian experimental and mathematical philosophy. There is a set of foundational experiments, on which most of the theory is constructed. And then there is the bold theoretical proposal of a field-field interaction from James Clerk Maxwell. This textbook presents the theory of classical fields as a mathematical structure based solidly on laboratory experiments. Here the student is introduced to the beauty of classical field theory as a gem of theoretical physics. To keep the discussion fluid, the history is placed in a beginning chapter and some of the mathematical proofs in the appendices. Chapters on Green’s Functions and Laplace’s Equation and a discussion of Faraday’s Experiment further deepen the understanding. The chapter on Einstein’s relativity is an integral necessity to the text. Finally, chapters on particle motion and waves in a dispersive medium complete the picture. High quality diagrams and detailed end-of-chapter questions enhance the learning experience.
Thermodynamics is not the oldest of sciences. Mechanics can make that claim. Thermodynamicsisaproductofsomeofthegreatestscienti?cmindsofthe19thand 20th centuries. But it is suf?ciently established that most authors of new textbooks in thermodynamics ?nd it necessary to justify their writing of yet another textbook. I ?nd this an unnecessary exercise because of the centrality of thermodynamics as a science in physics, chemistry, biology, and medicine. I do acknowledge, however, that instruction in thermodynamics often leaves the student in a confused state. My attempt in this book is to present thermodynamics in as simple and as uni?ed a form as possible. As teachers we identify the failures of our own teachers and attempt to correct them. Although I personally acknowledge with a deep gratitude the appreciation for thermodynamics that I found as an undergraduate, I also realize that my teachers did not convey to me the sweeping grandeur of thermodynamics. Speci?cally the s- plicity and the power that James Clerk Maxwell found in the methods of Gibbs were not part of my undergraduate experience. Unfortunately some modern authors also seem to miss this central theme, choosing instead to introduce the thermodynamic potentials as only useful functions at various points in the development.
This book offers a fresh perspective on some of the central experimental and theoretical works that laid the foundations for today's quantum mechanics: It traces the theoretical and mathematical development of the hypotheses that put forward to explain puzzling experimental results; it also examines their interconnections and how they together evolved into modern quantum theory. Particular attention is paid to J.J. Thomson's atomic modeling and experiments at the Cavendish Laboratory, Max Planck's struggle to explain the experimental results of Heinrich Rubens and Ferdinand Kurlbaum, as well as the path leading from Louis de Broglie’s ideas to the wave theory of Erwin Schrödinger. Combining his experience in teaching quantum mechanics with his interest in the historical roots of the subject, the author has created a valuable resource for understanding quantum physics through its history, and a book that is appreciated both by working physicists and historians.
This advanced undergraduate textbook begins with the Lagrangian formulation of Analytical Mechanics and then passes directly to the Hamiltonian formulation and the canonical equations, with constraints incorporated through Lagrange multipliers. Hamilton's Principle and the canonical equations remain the basis of the remainder of the text. Topics considered for applications include small oscillations, motion in electric and magnetic fields, and rigid body dynamics. The Hamilton-Jacobi approach is developed with special attention to the canonical transformation in order to provide a smooth and logical transition into the study of complex and chaotic systems. Finally the text has a careful treatment of relativistic mechanics and the requirement of Lorentz invariance. The text is enriched with an outline of the history of mechanics, which particularly outlines the importance of the work of Euler, Lagrange, Hamilton and Jacobi. Numerous exercises with solutions support the exceptionally clear and concise treatment of Analytical Mechanics.
This advanced undergraduate textbook begins with the Lagrangian formulation of Analytical Mechanics and then passes directly to the Hamiltonian formulation and the canonical equations, with constraints incorporated through Lagrange multipliers. Hamilton's Principle and the canonical equations remain the basis of the remainder of the text. Topics considered for applications include small oscillations, motion in electric and magnetic fields, and rigid body dynamics. The Hamilton-Jacobi approach is developed with special attention to the canonical transformation in order to provide a smooth and logical transition into the study of complex and chaotic systems. Finally the text has a careful treatment of relativistic mechanics and the requirement of Lorentz invariance. The text is enriched with an outline of the history of mechanics, which particularly outlines the importance of the work of Euler, Lagrange, Hamilton and Jacobi. Numerous exercises with solutions support the exceptionally clear and concise treatment of Analytical Mechanics.
This book offers a fresh perspective on some of the central experimental and theoretical works that laid the foundations for today's quantum mechanics: It traces the theoretical and mathematical development of the hypotheses that put forward to explain puzzling experimental results; it also examines their interconnections and how they together evolved into modern quantum theory. Particular attention is paid to J.J. Thomson's atomic modeling and experiments at the Cavendish Laboratory, Max Planck's struggle to explain the experimental results of Heinrich Rubens and Ferdinand Kurlbaum, as well as the path leading from Louis de Broglie’s ideas to the wave theory of Erwin Schrödinger. Combining his experience in teaching quantum mechanics with his interest in the historical roots of the subject, the author has created a valuable resource for understanding quantum physics through its history, and a book that is appreciated both by working physicists and historians.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.