This third edition includes the corrections made by the late C. Truesdell in his personal copy. It is annotated by S. Antman who describes the monograph`s genesis and the impact it has made on the modern development of mechanics. Originally published as Volume III/3 of the famous Encyclopedia of Physics in 1965, this book describes and summarizes "everything that was both known and worth knowing in the field at the time." It also has greatly contributed to the unification and standardization of the concepts, terms and notations in the field.
A First Course in Rational Continuum Mechanics, Volume 1: General Concepts describes general concepts in rational continuum mechanics and covers topics ranging from bodies and forces to motions and energies, kinematics, and the stress tensor. Constitutive relations are also discussed, and some definitions and theorems of algebra, geometry, and calculus are included. Exercises and their solutions are given as well. Comprised of four chapters, this volume begins with an introduction to rational mechanics by focusing on the mathematical concepts of bodies, forces, motions, and energies. Systems that provide possible universes for mechanics are described. The next chapter explores kinematics, with emphasis on bodies, placements, and motions as well as other relevant concepts like local deformation and homogeneous transplacement. The book also considers the stress tensor and Cauchy's fundamental theorem before concluding with a discussion on constitutive relations. This monograph is designed for students taking a course in mathematics or physics.
A compact, moderately general book which encompasses many fluid models of current interest...The book is written very clearly and contains a large number of exercises and their solutions. The level of mathematics is that commonly taught to undergraduates in mathematics departments.. —Mathematical Reviews The book should be useful for graduates and researchers not only in applied mathematics and mechanical engineering but also in advanced materials science and technology...Each public scientific library as well as hydrodynamics hand libraries should own this timeless book...Everyone who decides to buy this book can be sure to have bought a classic of science and the heritage of an outstanding scientist. —Silikáty All applied mathematicians, mechanical engineers, aerospace engineers, and engineering mechanics graduates and researchers will find the book an essential reading resource for fluids. —Simulation News Europe
When, after the agreeable fatigues of solicitation, Mrs Millamant set out a long bill of conditions subject to which she might by degrees dwindle into a wife, Mirabell offered in return the condition that he might not thereby be beyond measure enlarged into a husband. With age and experience in research come the twin dangers of dwindling into a philosopher of science while being enlarged into a dotard. The philosophy of science, I believe, should not be the preserve of senile scientists and of teachers of philosophy who have themselves never so much as understood the contents of a textbook of theoretical physics, let alone done a bit of mathematical research or even enjoyed the confidence of a creating scientist. On the latter count I run no risk: Any reader will see that I am untrained (though not altogether unread) in classroom philosophy. Of no ignorance of mine do I boast, indeed I regret it, but neither do I find this one ignorance fatal here, for few indeed of the great philosophers to explicate whose works hodiernal professors of phil osophy destroy forests of pulp were themselves so broadly and specially trained as are their scholiasts. In attempt to palliate the former count I have chosen to collect works written over the past thirty years, some of them not published before, and I include only a few very recent essays.
This volume collects my shorter articles on the history of mechanics, some already published in various places, some revised from earlier papers, and some never published before. All of them began as lectures, and here they are printed as such, little changed from the last times I read them out to an audience. While the several articles concern different aspects of mechanics, overlap and even some repetition could not be avoided, since mechanics is one great science, and the same original oftentimes served more than one end in its growth. My three major historical treatises, which were published in Volumes (II) 11 , 2 12, and 13 of L. Euleri Opera Omnia, are not included. To simplify the printing I have also mostly omitted detailed reference to sources discussed more fully in those treatises, but of course I have added to the texts of the lectures citations of other sources, some notes in answer to questions a reader might ask, and biblio graphical notes at the end of each. I am grateful to the U.S. National Science Foundation for its support of this work through a grant to The Johns Hopkins University.
In the first edition of this book I tried to survey in brief compass the main ideas, methods, and discoveries of rational thermodynamics as it then stood, only five years after Messrs. COLEMAN & NOLL, while in Baltimore, had written the fundamental memoir that provided for the new science the one root theretofore wanting. A survey in the same style today would require an almost wholly new book, three or four times as long. As it was in 1968, again in 1983 a consecutive treatise restricted to the foundations would be premature, for at this moment they are under earnest discussion, probing analysis, and powerful attack by several students and from several directions. Because, although in the first edition I expressed some opinions I no longer hold and made some statements I should now recast or even re tract, it seems even yet to offer a simple introduction to some aspects of the field that remain current, I have chosen to reprint it unaltered except for emendation of slips and bettering of the English here and there.
The lectures here reported were first delivered in August and September, 1965, for the Department of Mechanical and Aerospace Engi neering at syracuse University, New York under the sponsorship of the New York State Science and Technology Foundation. Lectures 1-6 and 22-23 are revised from a version prepared by Professor Kin N. Tong on the basis of a transcription of the lectures, kindly provided by Professor S. Eskinazi. The remainder of th~ text has been written out afresh from my own notes. Much of the same ground was covered in my lectures to the Austra lian Mathematical Society's Summer Research Institute at Melbourne in January and February, 1966, and for the parts affected the text conforms to this latter presentation. I am grateful to Professors C.-C. Wang and K. N. Tong for criticism of the manuscript. These lectures constitute a course, not a treatise. Names are attached to theorems justly, to the best of my knowledge, but are not intended to replace a history of the subject or references to the sources.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.