This book presents the mathematical theory of turbulence to engineers and physicists, and the physical theory of turbulence to mathematicians. The mathematical technicalities are kept to a minimum within the book, enabling the language to be at a level understood by a broad audience.
This work was initiated in the summer of 1985 while all of the authors were at the Center of Nonlinear Studies of the Los Alamos National Laboratory; it was then continued and polished while the authors were at Indiana Univer sity, at the University of Paris-Sud (Orsay), and again at Los Alamos in 1986 and 1987. Our aim was to present a direct geometric approach in the theory of inertial manifolds (global analogs of the unstable-center manifolds) for dissipative partial differential equations. This approach, based on Cauchy integral mani folds for which the solutions of the partial differential equations are the generating characteristic curves, has the advantage that it provides a sound basis for numerical Galerkin schemes obtained by approximating the inertial manifold. The work is self-contained and the prerequisites are at the level of a graduate student. The theoretical part of the work is developed in Chapters 2-14, while in Chapters 15-19 we apply the theory to several remarkable partial differ ential equations.
This book presents a unified approach for solving both stationary and nonstationary interpolation problems, in finite or infinite dimensions, based on the commutant lifting theorem from operator theory and the state space method from mathematical system theory. Initially the authors planned a number of papers treating nonstationary interpolation problems of Nevanlinna-Pick and Nehari type by reducing these nonstationary problems to stationary ones for operator-valued functions with operator arguments and using classical commutant lifting techniques. This reduction method required us to review and further develop the classical results for the stationary problems in this more general framework. Here the system theory turned out to be very useful for setting up the problems and for providing natural state space formulas for describing the solutions. In this way our work involved us in a much wider program than original planned. The final results of our efforts are presented here. The financial support in 1994 from the "NWO-stimulansprogramma" for the Thomas Stieltjes Institute for Mathematics in the Netherlands enabled us to start the research which lead to the present book. We also gratefully acknowledge the support from our home institutions: Indiana University at Bloomington, Purdue University at West Lafayette, Tel-Aviv University, and the Vrije Universiteit at Amsterdam. We warmly thank Dr. A.L. Sakhnovich for his carefully reading of a large part of the manuscript. Finally, Sharon Wise prepared very efficiently and with great care the troff file of this manuscript; we are grateful for her excellent typing.
The fundamental problem in control engineering is to provide robust performance to uncertain plants. H -control theory began in the early eighties as an attempt to lay down rigorous foundations on the classical robust control requirements. It now turns out that H -control theory is at the crossroads of several important directions of research space or polynomial approach to control and classical interpolation theory; harmonic analysis and operator theory; minimax LQ stochastic control and integral equations. The book presents the underlying fundamental ideas, problems and advances through the pen of leading contributors to the field, for graduate students and researchers in both engineering and mathematics. From the Contents: C. Foias: Commutant Lifting Techniques for Computing Optimal H Controllers.- B.A. Francis: Lectures on H Control and Sampled-Data Systems.- J.W. Helton: Two Topics in Systems Engineering Frequency Domain Design and Nonlinear System.- H. Kwakernaak: The Polynomial Approach to H -Optimal Regulation.- J.B. Pearson: A Short Course in l - Optimal Control
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.