Bruno de Finetti (1906–1985) is the founder of the subjective interpretation of probability, together with the British philosopher Frank Plumpton Ramsey. His related notion of “exchangeability” revolutionized the statistical methodology. This book (based on a course held in 1979) explains in a language accessible also to non-mathematicians the fundamental tenets and implications of subjectivism, according to which the probability of any well specified fact F refers to the degree of belief actually held by someone, on the ground of her whole knowledge, on the truth of the assertion that F obtains.
Bruno de Finetti (1906–1985) is the founder of the subjective interpretation of probability, together with the British philosopher Frank Plumpton Ramsey. His related notion of “exchangeability” revolutionized the statistical methodology. This book (based on a course held in 1979) explains in a language accessible also to non-mathematicians the fundamental tenets and implications of subjectivism, according to which the probability of any well specified fact F refers to the degree of belief actually held by someone, on the ground of her whole knowledge, on the truth of the assertion that F obtains.
First issued in translation as a two-volume work in 1975, this classic book provides the first complete development of the theory of probability from a subjectivist viewpoint. It proceeds from a detailed discussion of the philosophical mathematical aspects to a detailed mathematical treatment of probability and statistics. De Finetti’s theory of probability is one of the foundations of Bayesian theory. De Finetti stated that probability is nothing but a subjective analysis of the likelihood that something will happen and that that probability does not exist outside the mind. It is the rate at which a person is willing to bet on something happening. This view is directly opposed to the classicist/ frequentist view of the likelihood of a particular outcome of an event, which assumes that the same event could be identically repeated many times over, and the 'probability' of a particular outcome has to do with the fraction of the time that outcome results from the repeated trials.
This book explains the misuses and abuses of Null Hypothesis Significance Tests, which are reconsidered in light of Jeffreys’ Bayesian concept of the role of statistical inference, in experimental investigations. Minimizing the technical aspects, the studies focuses mainly on methodological contributions. The first part of the book gives an overview of the major approaches to statistical testing and an enlightening discussion of the philosophies of Fisher, Neyman-Pearson and Jeffrey. The conceptual and methodological implications of current practices of reporting effect sizes and confidence intervals are also examined and challenged. This sheds new light on the "significance testing controversy" and provides an appropriate Bayesian framework for a comprehensive approach to the analysis and interpretation of experimental data. The second part of the book provides concrete Bayesian routine procedures that bypass common misuses of significance testing and are readily applicable in a wide range of real applications. This approach addresses the need for objective reporting of experimental data, that is acceptable to the scientific community. This is emphasized by the name fiducial (from the Latin fiducia = confidence). The fiducial Bayesian procedures provide the reader with a real opportunity to think sensibly about problems of statistical inference. This book prepares students and researchers to critically read statistical analyses reported in the literature and equips them with an appropriate alternative to the use of significance testing.
Introduction to Statistical Decision Theory: Utility Theory and Causal Analysis provides the theoretical background to approach decision theory from a statistical perspective. It covers both traditional approaches, in terms of value theory and expected utility theory, and recent developments, in terms of causal inference. The book is specifically designed to appeal to students and researchers that intend to acquire a knowledge of statistical science based on decision theory. Features Covers approaches for making decisions under certainty, risk, and uncertainty Illustrates expected utility theory and its extensions Describes approaches to elicit the utility function Reviews classical and Bayesian approaches to statistical inference based on decision theory Discusses the role of causal analysis in statistical decision theory
Both a grounding in the origins and development of Keynesian economics, this study also looks at the ongoing significance of his work. It examines the different interpretations of Keynsian thought on economics as a discipline and the schools of thought that provided these interpretations.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.