The use of power ultrasound to promote industrial electrochemical processes, or sonoelectrochemistry, was first discovered over 70 years ago, but recently there has been a revived interest in this field. Sonoelectrochemistry is a technology that is safe, cost-effective, environmentally friendly and energy efficient compared to other conventional methods. The book contains chapters on the following topics, contributed from leading researchers in academia and industry: Use of electrochemistry as a tool to investigate Cavitation Bubble Dynamics Sonoelectroanalysis Sonoelectrochemistry in environmental applications Organic Sonoelectrosynthesis Sonoelectrodeposition Influence of ultrasound on corrosion kinetics and its application to corrosion tests Sonoelectropolymerisation Sonoelectrochemical production of nanomaterials Sonochemistry and Sonoelectrochemistry in hydrogen and fuel cell technologies
A Selection of Papers from the 8th International Workshop on Computer Aided Systems Theory, Las Palmas de Gran Canaria, Spain, February 19-23, 2001. Revised Papers
A Selection of Papers from the 8th International Workshop on Computer Aided Systems Theory, Las Palmas de Gran Canaria, Spain, February 19-23, 2001. Revised Papers
This book constitutes the thoroughly refereed post-proceedings of the 8th International Workshop on Computer Aided Systems Theory, EUROCAST 2001, held in Las Palmas de Gran Canaria, Spain in February 2001. The 48 revised full papers presented together with two invited papers were carefully selected during two rounds of reviewing and revision. The book offers topical sections on computer aided systems theory, mathematical and logical formalisms, information and decision, complexity, neural-like computation, automation and control, computer algebra and automated theorem proving, and functional programming and lambda calculus.
A timely overview of the energy landscape in South Africa (RSA) is presented in this Springerbrief. The background and context to the current situation, and analysis of the policies being put forward by the government for the near future are described. Four broad areas are covered: reserves and production of fossil fuels, the electricity sector, the rapidly growing exploitation of renewable energy, and the recent push towards developing an industry around hydrogen and fuel cells. This Springerbrief presents a methodical review of the energy landscape in RSA, covering the general situation, the supply and demand for energy, and the structure of the energy sector (Chapters 1&2). Chapter 3 presents data and analysis of the country’s fossil fuels, electricity generation, and the chemistry of green, future sources of energy, production and the role of industry. Chapter 4 discusses recent developments, including the impact on green jobs and green funds, and Chapter 5 reflects on the policies that have been proposed and their potential implications.
This book provides an introduction to the fundamental and applied aspects of sonochemistry, discussing a number of basic concepts in sonochemistry, such as how ultrasonic waves interact with gas bubbles in liquids to generate cavitation, and how the high temperatures generated within cavitation bubbles could be estimated. It explains how redox radicals are produced and how to make use of both the physical and chemical forces generated during cavitation for various applications. Intended for academic researchers, industry professionals as well as undergraduate and graduate students, especially those starting on a new research topic or those new to the field, it provides a clear understanding of the concepts and methodologies involved in ultrasonic and sonochemistry.
We heartily recommend this book to all readers who wish to gain a better understanding of nanostructured carbon materials surface properties and used in catalysis." An-Hui Lu, ChemCatChem There is great interest in using nanostructured carbon materials in catalysis, either as supports for immobilizing active species or as metal-free catalysts due to their unique structural, thermal, chemical, electronic and mechanical properties, and tailorable surface chemistry. This book looks at the structure and properties of different doped and undoped nanocarbons including graphene; fullerenes; nanodiamonds; carbon nanotubes and nanofibers; their synthesis and modification to produce catalysts. Special attention is paid to adsorption, as it impacts the application of these materials in various industrially relevant catalytic reactions discussed herein, in addition to photocatalysis and electrocatalysis. Written by leading experts in the area, this is the first book to provide a comprehensive view of the subject for the catalysis community.
Because of the increasing need for ever better performing materials endowed with specific properties, macromolecular engineering has become a useful tool for designing well-architectured polymers (telomers, telechelics, stars, dendrimers, alternating, block- and graftcopolymers). These polymers are nowadays seeing an enormous growth. Among them, fluoropolymers are seen as high value added materials in many applications ranging from surfactants, optical fibers, biomaterials, coatings, to membranes for fuel cells. Indeed, the relationship between structure of the monomer to the properties of the polymers is of increasing interest so that these properties are tuned for the most appropriate applications. As most fluoropolymers are prepared from radical synthesis, this book devotes various parts on the use of the controlled radical (or pseudo-living) polymerisation of fluoromonomers leading to discoveries of thermoplastic elastomers or original surfactants for polymerisation in supercritical CO2. Well-Architectured Fluoropolymers: Synthesis, Properties and Applications is composed of five chapters starting with a general introduction outlining basic concepts. Emphasis is placed on recent developments, and each chapter describes comprehensive techniques of synthesis of well-defined fluorotelomers or polymers, their properties, characterisations, and their applications, for immediate use by today's engineers, industrial and academic scientists, and researchers. The book has been arranged to enable self-managed reading and learning. It is both a source of data and a reference. - On the synthesis, properties and applications of fluoropolymers: remarkable, high value added materials applied in surfactants, optical fibres, biomaterials, coatings and membranes for fuel cells - For immediate use by today's engineers, industrial and academic scientists, and researchers - Written to enable self-managed reading and learning, being both a source of data and a reference
Hydrogen and Fuel Cells Primers is a series focused on Energy applications. Its concise volumes present those coming into this broad and multidisciplinary field with the most recent advances in each of its particular topics. They bring together information that has thus far been scattered in many different sources under one single title, which makes them a useful reference for industry professionals, researchers and graduate students, especially those starting in a new topic of research. This volume, Recent Advances in High Temperature PEM Fuel Cells, provides an up-to-date progress of High Temperature Polymer Electrolyte Membrane Fuel Cells (HTPEMFCs), including three critical subjects for this type of fuel cells: Membrane Electrode Assembly (MEA) development, stack development and systems development. The MEA and stack development sections cover the recent advances in this area and highlight the areas in most need of improvement. The systems development section focuses on stationary systems, mainly Combined Heat and Power (CHP), based on HTPEMFCs. Finally the conclusions summarize the recent advances of HTPEMFCs in all these areas and provide some insights for future developments. Prof. Bruno G. Pollet, Series Editor - Presents the most current knowledge in membrane electrode assembly, stack, and systems development for HTPEMFCs - Highlights the areas that need improvement in electrode assembly and stack development - Examines stationary high temperature PEMFC systems, including CHP
A timely overview of the energy landscape in South Africa (RSA) is presented in this Springerbrief. The background and context to the current situation, and analysis of the policies being put forward by the government for the near future are described. Four broad areas are covered: reserves and production of fossil fuels, the electricity sector, the rapidly growing exploitation of renewable energy, and the recent push towards developing an industry around hydrogen and fuel cells. This Springerbrief presents a methodical review of the energy landscape in RSA, covering the general situation, the supply and demand for energy, and the structure of the energy sector (Chapters 1&2). Chapter 3 presents data and analysis of the country’s fossil fuels, electricity generation, and the chemistry of green, future sources of energy, production and the role of industry. Chapter 4 discusses recent developments, including the impact on green jobs and green funds, and Chapter 5 reflects on the policies that have been proposed and their potential implications.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.