This book presents the results from the Uranium Mining and Hydrogeology Congress held in September 2005, in Freiberg, Germany. It addresses scientists and engineers involved in the areas of uranium mining and milling sites, clean-up measures, emissions of nuclear power plants and radioactive waste disposal, as well as political decision-makers. The topics covered are: impact on groundwater from radionuclide emission, analytical specification techniques, chemical toxicity, radioisotope plant uptake, microbiology, geochemical and reactive transport, case studies on active and abandoned uranium mines and milling sites, long-term storage of radioactive waste, passive in situ treatment techniques and risk assessment studies. The accompanying CD-ROM includes all papers in colour.
To understand hydrochemistry and to analyze natural as well as man-made impacts on aquatic systems, hydrogeochemical models have been used since the 1960’s and more frequently in recent times. Numerical groundwater flow, transport, and geochemical models are important tools besides classical deterministic and analytical approaches. Solving complex linear or non-linear systems of equations, commonly with hundreds of unknown parameters, is a routine task for a PC. Modeling hydrogeochemical processes requires a detailed and accurate water analysis, as well as thermodynamic and kinetic data as input. Thermodynamic data, such as complex formation constants and solubility-products, are often provided as databases within the respective programs. However, the description of surface-controlled reactions (sorption, cation exchange, surface complexation) and kinetically controlled reactions requires additional input data. Unlike groundwater flow and transport models, thermodynamic models, in principal, do not need any calibration. However, considering surface-controlled or kinetically controlled reaction models might be subject to calibration. Typical problems for the application of geochemical models are: • speciation • determination of saturation indices • adjustment of equilibria/disequilibria for minerals or gases • mixing of different waters • modeling the effects of temperature • stoichiometric reactions (e.g. titration) • reactions with solids, fluids, and gaseous phases (in open and closed systems) • sorption (cation exchange, surface complexation) • inverse modeling • kinetically controlled reactions • reactive transport Hydrogeochemical models depend on the quality of the chemical analysis, the boundary conditions presumed by the program, theoretical concepts (e.g.
proceedings of the International Conference [on] Uranium Mining and Hydrogeology III and the International Mine Water Association Symposium, Freiberg, Germany, 15-21 September 2002 : with 453 figures, 151 tables and a CD-ROM
proceedings of the International Conference [on] Uranium Mining and Hydrogeology III and the International Mine Water Association Symposium, Freiberg, Germany, 15-21 September 2002 : with 453 figures, 151 tables and a CD-ROM
This book addresses scientists and engineers involved in the areas of uranium mining and milling sites, clean-up measures, emissions of nuclear power plants and radioactive waste disposal, as well as political decision-makers. The topics covered are: impact on groundwater from radionuclide emission, analytical speciation techniques, chemical toxicity, radioisotope plant uptake, microbiology catalyzing U(6+) to U(4+) reduction, geochemical and reactive transport, case studies on abandoned uranium mines and milling sites, long-term storage of radioactive waste, passive in situ treatment techniques and risk assessment studies.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.