Nanometre sized structures made of semiconductors, insulators, and metals and grown by modern growth technologies or by chemical synthesis exhibit novel electronic and optical phenomena due to the confinement of electrons and photons. Strong interactions between electrons and photons in narrow regions lead to inhibited spontaneous emission, thresholdless laser operation, and Bose-Einstein condensation of exciton-polaritons in microcavities. Generation of sub-wavelength radiation by surface plasmon-polaritons at metal-semiconductor interfaces, creation of photonic band gaps in dielectrics, and realization of nanometer sized semiconductor or insulator structures with negative permittivity and permeability, known as metamaterials, are further examples in the area of Nanophotonics. The studies help develop spasers and plasmonic nanolasers of subwavelength dimensions, paving the way to use plasmonics in future data centres and high-speed computers working at THz bandwidth with less than a few fJ/bit dissipation. The present book is aimed at graduate students and researchers providing them with an introductory textbook on Semiconductor Nanophotonics. It gives an introduction to electron-photon interactions in Quantum Wells, Wires, and Dots and then discusses the processes in microcavities, photonic band gap materials, metamaterials, and related applications. The phenomena and device applications under strong light-matter interactions are discussed, mostly by using classical and semi-classical theories. Numerous examples and problems accompany each chapter.
This book provides the reader with a comprehensive background of semiconductor lasers. It covers their structure, materials, operating principles supported by proper theory, and light power output, as well as conversion efficiency and how frequently the devices can be switched on and off. It also discusses the different lasers working at different wavelengths, viz, ultraviolet, visible, infrared and mid and far infrared regions of electromagnetic spectrum along with proper structure, materials and theory.
The phytochemical constituents of plants fall into two main categories based on their role in basic metabolic processes: primary and secondary. Primary metabolites are involved in basic life functions and are similar in all living cells, whereas secondary metabolites are derived from subsidiary pathways. Although traditionally referred to as secondary metabolites, more recently these compounds have been termed 'plant specialized metabolites', as the exact biochemical boundary between primary and secondary metabolites has not been fully established. Plant specialized metabolites are the main element in the study and use of 'medicinal' plants and herbs, as well as in nutrition and food chemistry. In modern medicine, plant specialized metabolites provide many of the lead compounds in the production of medicines targeted at treating a broad variety of diseases. Such metabolites also play an important role in sessile plants: to resist and withstand different biotic and abiotic stresses. Plant specialized metabolites are classified according to their chemical structures and this book will present the different classes in turn, while discussing their sources and distribution in plant families, their biosynthetic pathways, and their important and notable uses in phytochemistry and pharmacology. Chemical Diversity of Plant Specialized Metabolites will be a useful guide and reference point for chemists and students in many disciplines including synthetic organic chemists, medicinal chemists, plant scientists, pharmacognosists, chemical ecologists, bioengineers, and synthetic biologists, in addition to those working in related fields.
Nanometre sized structures made of semiconductors, insulators, and metals and grown by modern growth technologies or by chemical synthesis exhibit novel electronic and optical phenomena due to the confinement of electrons and photons. Strong interactions between electrons and photons in narrow regions lead to inhibited spontaneous emission, thresholdless laser operation, and Bose-Einstein condensation of exciton-polaritons in microcavities. Generation of sub-wavelength radiation by surface plasmon-polaritons at metal-semiconductor interfaces, creation of photonic band gaps in dielectrics, and realization of nanometer sized semiconductor or insulator structures with negative permittivity and permeability, known as metamaterials, are further examples in the area of Nanophotonics. The studies help develop spasers and plasmonic nanolasers of subwavelength dimensions, paving the way to use plasmonics in future data centres and high-speed computers working at THz bandwidth with less than a few fJ/bit dissipation. The present book is aimed at graduate students and researchers providing them with an introductory textbook on Semiconductor Nanophotonics. It gives an introduction to electron-photon interactions in Quantum Wells, Wires, and Dots and then discusses the processes in microcavities, photonic band gap materials, metamaterials, and related applications. The phenomena and device applications under strong light-matter interactions are discussed, mostly by using classical and semi-classical theories. Numerous examples and problems accompany each chapter.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.