DATA CONSCIENCE ALGORITHMIC S1EGE ON OUR HUM4N1TY EXPLORE HOW D4TA STRUCTURES C4N HELP OR H1NDER SOC1AL EQU1TY Data has enjoyed ‘bystander’ status as we’ve attempted to digitize responsibility and morality in tech. In fact, data’s importance should earn it a spot at the center of our thinking and strategy around building a better, more ethical world. It’s use—and misuse—lies at the heart of many of the racist, gendered, classist, and otherwise oppressive practices of modern tech. In Data Conscience: Algorithmic Siege on our Humanity, computer science and data inclusivity thought leader Dr. Brandeis Hill Marshall delivers a call to action for rebel tech leaders, who acknowledge and are prepared to address the current limitations of software development. In the book, Dr. Brandeis Hill Marshall discusses how the philosophy of “move fast and break things” is, itself, broken, and requires change. You’ll learn about the ways that discrimination rears its ugly head in the digital data space and how to address them with several known algorithms, including social network analysis, and linear regression A can’t-miss resource for junior-level to senior-level software developers who have gotten their hands dirty with at least a handful of significant software development projects, Data Conscience also provides readers with: Discussions of the importance of transparency Explorations of computational thinking in practice Strategies for encouraging accountability in tech Ways to avoid double-edged data visualization Schemes for governing data structures with law and algorithms
This practical guide shows, step by step, how to use machine learning to carry out actionable decisions that do not discriminate based on numerous human factors, including ethnicity and gender. The authors examine the many kinds of bias that occur in the field today and provide mitigation strategies that are ready to deploy across a wide range of technologies, applications, and industries. Edited by engineering and computing experts, Mitigating Bias in Machine Learning includes contributions from recognized scholars and professionals working across different artificial intelligence sectors. Each chapter addresses a different topic and real-world case studies are featured throughout that highlight discriminatory machine learning practices and clearly show how they were reduced. Mitigating Bias in Machine Learning addresses: Ethical and Societal Implications of Machine Learning Social Media and Health Information Dissemination Comparative Case Study of Fairness Toolkits Bias Mitigation in Hate Speech Detection Unintended Systematic Biases in Natural Language Processing Combating Bias in Large Language Models Recognizing Bias in Medical Machine Learning and AI Models Machine Learning Bias in Healthcare Achieving Systemic Equity in Socioecological Systems Community Engagement for Machine Learning
DATA CONSCIENCE ALGORITHMIC S1EGE ON OUR HUM4N1TY EXPLORE HOW D4TA STRUCTURES C4N HELP OR H1NDER SOC1AL EQU1TY Data has enjoyed ‘bystander’ status as we’ve attempted to digitize responsibility and morality in tech. In fact, data’s importance should earn it a spot at the center of our thinking and strategy around building a better, more ethical world. It’s use—and misuse—lies at the heart of many of the racist, gendered, classist, and otherwise oppressive practices of modern tech. In Data Conscience: Algorithmic Siege on our Humanity, computer science and data inclusivity thought leader Dr. Brandeis Hill Marshall delivers a call to action for rebel tech leaders, who acknowledge and are prepared to address the current limitations of software development. In the book, Dr. Brandeis Hill Marshall discusses how the philosophy of “move fast and break things” is, itself, broken, and requires change. You’ll learn about the ways that discrimination rears its ugly head in the digital data space and how to address them with several known algorithms, including social network analysis, and linear regression A can’t-miss resource for junior-level to senior-level software developers who have gotten their hands dirty with at least a handful of significant software development projects, Data Conscience also provides readers with: Discussions of the importance of transparency Explorations of computational thinking in practice Strategies for encouraging accountability in tech Ways to avoid double-edged data visualization Schemes for governing data structures with law and algorithms
With the election of Woodrow Wilson in 1912, Louis D. Brandeis emerged as the undisputed intellectual leader of those reformers who were trying to recreate a democratic society free from the economic and political depradations of monopolistic enterprise. But now these reformers had a champion in the White House, and direct access to him through one of his most trusted advisers. In this volume we see what was probably the high point of progressive reform--the first three years of the Wilson Administration. During these years Brandeis was considered for a Cabinet position, consulted frequently on matters of patronage, and called in at key junctures to determine policy. But he still kept up his many obligations to different reform groups: arguing cases before the Supreme Court, acting as public counsel in rate hearings, writing Other People's Money, one of the key exposes of the era, as well as advising his good friend Robert M. LaFollette and other reform leaders. Yet at the height of his career as a reformer, Brandeis suddenly took on another heavy obligation, the leadership of the American Zionist movement, and helped marshal Jews in this country to aid their brethren in war-ravaged Europe and Palestine. Carrying over his democratic ideals, he challenged the established American Jewish aristocracy in the Congress movement, in order to broaden the base of Jewish participation in important issues. At the end of 1915, Brandeis was an important figure not only in domestic reform and Jewish affairs, but on the international scene as well. And although no one knew it at the time, he stood at the brink of nomination to the nation's highest court. As in the earlier volumes, these letters indicate the inner workings of American reform, and they also show how American Zionism, under the leadership of Brandeis and his lieutenants, assumed those characteristics that would make it a unique and powerful instrument in world politics.
This practical guide shows, step by step, how to use machine learning to carry out actionable decisions that do not discriminate based on numerous human factors, including ethnicity and gender. The authors examine the many kinds of bias that occur in the field today and provide mitigation strategies that are ready to deploy across a wide range of technologies, applications, and industries. Edited by engineering and computing experts, Mitigating Bias in Machine Learning includes contributions from recognized scholars and professionals working across different artificial intelligence sectors. Each chapter addresses a different topic and real-world case studies are featured throughout that highlight discriminatory machine learning practices and clearly show how they were reduced. Mitigating Bias in Machine Learning addresses: Ethical and Societal Implications of Machine Learning Social Media and Health Information Dissemination Comparative Case Study of Fairness Toolkits Bias Mitigation in Hate Speech Detection Unintended Systematic Biases in Natural Language Processing Combating Bias in Large Language Models Recognizing Bias in Medical Machine Learning and AI Models Machine Learning Bias in Healthcare Achieving Systemic Equity in Socioecological Systems Community Engagement for Machine Learning
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.